#include #include #include #include namespace warfactory { SequentialModuleSystem::SequentialModuleSystem() { // Create logger with file and console output auto console_sink = std::make_shared(); auto file_sink = std::make_shared("logs/sequential_system.log", true); console_sink->set_level(spdlog::level::debug); file_sink->set_level(spdlog::level::trace); logger = std::make_shared("SequentialModuleSystem", spdlog::sinks_init_list{console_sink, file_sink}); logger->set_level(spdlog::level::trace); logger->flush_on(spdlog::level::debug); spdlog::register_logger(logger); logSystemStart(); lastProcessTime = std::chrono::high_resolution_clock::now(); } SequentialModuleSystem::~SequentialModuleSystem() { logger->info("🔧 SequentialModuleSystem destructor called"); if (module) { logger->info("📊 Final performance metrics:"); logger->info(" Total process calls: {}", processCallCount); logger->info(" Total process time: {:.2f}ms", totalProcessTime); logger->info(" Average process time: {:.3f}ms", getAverageProcessTime()); logger->info(" Total task executions: {}", taskExecutionCount); } logger->trace("🏗️ SequentialModuleSystem destroyed"); } void SequentialModuleSystem::setModule(std::unique_ptr newModule) { logger->info("🔧 Setting module in SequentialModuleSystem"); if (module) { logger->warn("⚠️ Replacing existing module '{}' with new module", moduleName); try { module->shutdown(); logger->debug("✅ Previous module shut down successfully"); } catch (const std::exception& e) { logger->error("❌ Error shutting down previous module: {}", e.what()); } } if (!newModule) { logger->error("❌ Cannot set null module"); throw std::invalid_argument("Cannot set null module"); } module = std::move(newModule); // Get module type for better logging try { moduleName = module->getType(); logger->info("✅ Module set successfully: type '{}'", moduleName); } catch (const std::exception& e) { logger->warn("⚠️ Could not get module type: {} - using 'unknown'", e.what()); moduleName = "unknown"; } // Reset performance metrics for new module resetPerformanceMetrics(); logger->debug("📊 Performance metrics reset for new module"); } IModule* SequentialModuleSystem::getModule() const { logger->trace("🔍 Module pointer requested"); return module.get(); } int SequentialModuleSystem::processModule(float deltaTime) { logProcessStart(deltaTime); auto processStartTime = std::chrono::high_resolution_clock::now(); try { validateModule(); // Create input JSON for module json moduleInput = { {"deltaTime", deltaTime}, {"frameCount", processCallCount}, {"system", "sequential"}, {"timestamp", std::chrono::duration_cast( processStartTime.time_since_epoch()).count()} }; logger->trace("📥 Calling module process() with input: {}", moduleInput.dump()); // Process the module module->process(moduleInput); processCallCount++; auto processEndTime = std::chrono::high_resolution_clock::now(); lastProcessDuration = std::chrono::duration(processEndTime - processStartTime).count(); totalProcessTime += lastProcessDuration; logProcessEnd(lastProcessDuration); // Check for performance warnings if (lastProcessDuration > 16.67f) { // More than 60fps budget logger->warn("🐌 Slow module processing: {:.2f}ms (target: <16.67ms for 60fps)", lastProcessDuration); } logger->trace("✅ Module processing completed successfully"); return 0; // Success } catch (const std::exception& e) { logger->error("❌ Error processing module '{}': {}", moduleName, e.what()); logger->error("🔍 Error occurred at frame {}, deltaTime: {:.3f}ms", processCallCount, deltaTime * 1000); auto processEndTime = std::chrono::high_resolution_clock::now(); lastProcessDuration = std::chrono::duration(processEndTime - processStartTime).count(); logProcessEnd(lastProcessDuration); return 1; // Error } } ModuleSystemType SequentialModuleSystem::getType() const { logger->trace("🏷️ ModuleSystem type requested: SEQUENTIAL"); return ModuleSystemType::SEQUENTIAL; } void SequentialModuleSystem::scheduleTask(const std::string& taskType, const json& taskData) { logger->debug("⚙️ Task scheduled for immediate execution: '{}'", taskType); logTaskExecution(taskType, taskData); try { // In sequential system, tasks execute immediately // This is just a placeholder - real task execution would happen here logger->trace("🔧 Executing task '{}' immediately", taskType); // TODO: Implement actual task execution // For now, we just log and count taskExecutionCount++; logger->debug("✅ Task '{}' completed immediately", taskType); } catch (const std::exception& e) { logger->error("❌ Error executing task '{}': {}", taskType, e.what()); throw; } } int SequentialModuleSystem::hasCompletedTasks() const { // Sequential system executes tasks immediately, so no completed tasks queue logger->trace("🔍 Completed tasks count requested: 0 (sequential execution)"); return 0; } json SequentialModuleSystem::getCompletedTask() { logger->warn("⚠️ getCompletedTask() called on sequential system - no queued tasks"); throw std::runtime_error("SequentialModuleSystem executes tasks immediately - no completed tasks queue"); } json SequentialModuleSystem::getPerformanceMetrics() const { logger->debug("📊 Performance metrics requested"); json metrics = { {"system_type", "sequential"}, {"module_name", moduleName}, {"process_calls", processCallCount}, {"total_process_time_ms", totalProcessTime}, {"average_process_time_ms", getAverageProcessTime()}, {"last_process_time_ms", lastProcessDuration}, {"task_executions", taskExecutionCount} }; if (processCallCount > 0) { auto currentTime = std::chrono::high_resolution_clock::now(); auto totalRunTime = std::chrono::duration(currentTime - lastProcessTime).count(); metrics["total_runtime_seconds"] = totalRunTime; metrics["average_fps"] = totalRunTime > 0 ? processCallCount / totalRunTime : 0.0f; } logger->trace("📄 Metrics JSON: {}", metrics.dump()); return metrics; } void SequentialModuleSystem::resetPerformanceMetrics() { logger->debug("📊 Resetting performance metrics"); processCallCount = 0; totalProcessTime = 0.0f; lastProcessDuration = 0.0f; taskExecutionCount = 0; lastProcessTime = std::chrono::high_resolution_clock::now(); logger->trace("✅ Performance metrics reset"); } float SequentialModuleSystem::getAverageProcessTime() const { if (processCallCount == 0) return 0.0f; return totalProcessTime / processCallCount; } size_t SequentialModuleSystem::getProcessCallCount() const { return processCallCount; } size_t SequentialModuleSystem::getTaskExecutionCount() const { return taskExecutionCount; } void SequentialModuleSystem::setLogLevel(spdlog::level::level_enum level) { logger->info("🔧 Setting log level to: {}", spdlog::level::to_string_view(level)); logger->set_level(level); } // Private helper methods void SequentialModuleSystem::logSystemStart() { logger->info("=" "=" "=" "=" "=" "=" "=" "=" "=" "=" "=" "=" "=" "=" "="); logger->info("⚙️ SEQUENTIAL MODULE SYSTEM INITIALIZED"); logger->info("=" "=" "=" "=" "=" "=" "=" "=" "=" "=" "=" "=" "=" "=" "="); logger->info("🎯 System Type: SEQUENTIAL (Debug/Test mode)"); logger->info("🔧 Features: Immediate execution, comprehensive logging"); logger->info("📊 Performance: Single-threaded, deterministic"); logger->trace("🏗️ SequentialModuleSystem object created at: {}", static_cast(this)); } void SequentialModuleSystem::logProcessStart(float deltaTime) { logger->trace("🎬 Process call {} START - deltaTime: {:.3f}ms, module: '{}'", processCallCount, deltaTime * 1000, moduleName); } void SequentialModuleSystem::logProcessEnd(float processTime) { logger->trace("🏁 Process call {} END - processTime: {:.3f}ms", processCallCount, processTime); // Log performance summary every 60 calls if (processCallCount > 0 && processCallCount % 60 == 0) { logger->debug("📊 Performance summary (frame {}): Avg: {:.3f}ms, Total: {:.1f}ms", processCallCount, getAverageProcessTime(), totalProcessTime); } } void SequentialModuleSystem::logTaskExecution(const std::string& taskType, const json& taskData) { logger->trace("⚙️ Task execution {} - type: '{}', data size: {} bytes", taskExecutionCount + 1, taskType, taskData.dump().size()); logger->trace("📄 Task data: {}", taskData.dump()); } std::unique_ptr SequentialModuleSystem::extractModule() { logger->info("🔓 Extracting module from system"); if (!module) { logger->warn("⚠️ No module to extract"); return nullptr; } auto extractedModule = std::move(module); moduleName = "unknown"; logger->info("✅ Module extracted successfully"); return extractedModule; } void SequentialModuleSystem::validateModule() const { if (!module) { logger->error("❌ No module set - cannot process"); throw std::runtime_error("No module set in SequentialModuleSystem"); } } } // namespace warfactory