This commit implements a complete test infrastructure for validating hot-reload stability and robustness across multiple scenarios. ## New Test Infrastructure ### Test Helpers (tests/helpers/) - TestMetrics: FPS, memory, reload time tracking with statistics - TestReporter: Assertion tracking and formatted test reports - SystemUtils: Memory usage monitoring via /proc/self/status - TestAssertions: Macro-based assertion framework ### Test Modules - TankModule: Realistic module with 50 tanks for production testing - ChaosModule: Crash-injection module for robustness validation - StressModule: Lightweight module for long-duration stability tests ## Integration Test Scenarios ### Scenario 1: Production Hot-Reload (test_01_production_hotreload.cpp) ✅ PASSED - End-to-end hot-reload validation - 30 seconds simulation (1800 frames @ 60 FPS) - TankModule with 50 tanks, realistic state - Source modification (v1.0 → v2.0), recompilation, reload - State preservation: positions, velocities, frameCount - Metrics: ~163ms reload time, 0.88MB memory growth ### Scenario 2: Chaos Monkey (test_02_chaos_monkey.cpp) ✅ PASSED - Extreme robustness testing - 150+ random crashes per run (5% crash probability per frame) - 5 crash types: runtime_error, logic_error, out_of_range, domain_error, state corruption - 100% recovery rate via automatic hot-reload - Corrupted state detection and rejection - Random seed for unpredictable crash patterns - Proof of real reload: temporary files in /tmp/grove_module_*.so ### Scenario 3: Stress Test (test_03_stress_test.cpp) ✅ PASSED - Long-duration stability validation - 10 minutes simulation (36000 frames @ 60 FPS) - 120 hot-reloads (every 5 seconds) - 100% reload success rate (120/120) - Memory growth: 2 MB (threshold: 50 MB) - Avg reload time: 160ms (threshold: 500ms) - No memory leaks, no file descriptor leaks ## Core Engine Enhancements ### ModuleLoader (src/ModuleLoader.cpp) - Temporary file copy to /tmp/ for Linux dlopen cache bypass - Robust reload() method: getState() → unload() → load() → setState() - Automatic cleanup of temporary files - Comprehensive error handling and logging ### DebugEngine (src/DebugEngine.cpp) - Automatic recovery in processModuleSystems() - Exception catching → logging → module reload → continue - Module state dump utilities for debugging ### SequentialModuleSystem (src/SequentialModuleSystem.cpp) - extractModule() for safe module extraction - registerModule() for module re-registration - Enhanced processModules() with error handling ## Build System - CMake configuration for test infrastructure - Shared library compilation for test modules (.so) - CTest integration for all scenarios - PIC flag management for spdlog compatibility ## Documentation (planTI/) - Complete test architecture documentation - Detailed scenario specifications with success criteria - Global test plan and validation thresholds ## Validation Results All 3 integration scenarios pass successfully: - Production hot-reload: State preservation validated - Chaos Monkey: 100% recovery from 150+ crashes - Stress Test: Stable over 120 reloads, minimal memory growth 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
103 lines
3.6 KiB
C++
103 lines
3.6 KiB
C++
#pragma once
|
|
|
|
#include <string>
|
|
#include <memory>
|
|
#include "ITaskScheduler.h"
|
|
|
|
// Forward declarations to avoid circular dependencies
|
|
namespace grove {
|
|
class IModule;
|
|
class IIO;
|
|
}
|
|
|
|
namespace grove {
|
|
|
|
enum class ModuleSystemType {
|
|
SEQUENTIAL = 0,
|
|
THREADED = 1,
|
|
THREAD_POOL = 2,
|
|
CLUSTER = 3
|
|
};
|
|
|
|
|
|
/**
|
|
* @brief Module execution strategy interface - swappable performance architecture
|
|
*
|
|
* The module system manages module lifecycle and execution strategy.
|
|
* Different implementations provide different performance characteristics:
|
|
*
|
|
* - SequentialModuleSystem: Debug/test mode, processes modules one at a time
|
|
* - ThreadedModuleSystem: Each module in its own thread
|
|
* - MultithreadedModuleSystem: Module tasks distributed across thread pool
|
|
* - ClusterModuleSystem: Modules distributed across multiple machines
|
|
*
|
|
* This enables progressive evolution from debug to production to MMO scale
|
|
* without changing any module business logic code.
|
|
*
|
|
* Inherits from ITaskScheduler to provide task delegation capabilities.
|
|
*/
|
|
class IModuleSystem : public ITaskScheduler {
|
|
public:
|
|
virtual ~IModuleSystem() = default;
|
|
|
|
/**
|
|
* @brief Register a module with the system
|
|
* @param name Unique identifier for the module
|
|
* @param module Module implementation (unique ownership)
|
|
*
|
|
* The module system takes ownership of the module and manages its lifecycle.
|
|
* Modules can be registered at any time and will participate in the next
|
|
* processing cycle.
|
|
*/
|
|
virtual void registerModule(const std::string& name, std::unique_ptr<IModule> module) = 0;
|
|
|
|
/**
|
|
* @brief Process all registered modules
|
|
* @param deltaTime Time elapsed since last processing cycle in seconds
|
|
*
|
|
* This is the core execution method that coordinates all modules according
|
|
* to the implemented strategy. Each module's process() method will be called
|
|
* with appropriate timing and coordination.
|
|
*/
|
|
virtual void processModules(float deltaTime) = 0;
|
|
|
|
/**
|
|
* @brief Set the IO layer for inter-module communication
|
|
* @param ioLayer Communication transport implementation (unique ownership)
|
|
*
|
|
* The module system takes ownership of the IO layer and uses it to
|
|
* facilitate communication between modules.
|
|
*/
|
|
virtual void setIOLayer(std::unique_ptr<IIO> ioLayer) = 0;
|
|
|
|
/**
|
|
* @brief Query a specific module directly
|
|
* @param name Name of the module to query
|
|
* @param input Input data to send to the module
|
|
* @return Response data from the module
|
|
*
|
|
* This provides direct access to module functionality for debugging,
|
|
* testing, or administrative purposes. The query bypasses normal
|
|
* execution flow and calls the module's process() method directly.
|
|
*/
|
|
virtual std::unique_ptr<IDataNode> queryModule(const std::string& name, const IDataNode& input) = 0;
|
|
|
|
/**
|
|
* @brief Get module system type identifier
|
|
* @return Module system type enum value for identification
|
|
*/
|
|
virtual ModuleSystemType getType() const = 0;
|
|
|
|
/**
|
|
* @brief Get count of pending async tasks for a specific module
|
|
* @param moduleName Name of the module to check
|
|
* @return Number of tasks still pending (scheduled or executing)
|
|
*
|
|
* Used by hot-reload system to ensure all async operations complete
|
|
* before module replacement. Returns 0 if module has no pending tasks
|
|
* or module name is unknown.
|
|
*/
|
|
virtual int getPendingTaskCount(const std::string& moduleName) const = 0;
|
|
};
|
|
|
|
} // namespace grove
|