GroveEngine/src/SequentialModuleSystem.cpp
StillHammer 5cef0e25b0 fix: UIModule button interaction + JsonDataNode array children support
- Fix JsonDataNode::getChildReadOnly() to handle JSON array access by numeric index
- Fix test_ui_showcase to use JSON array for children (matching test_single_button pattern)
- Add visual test files: test_single_button, test_ui_showcase, test_sprite_debug
- Clean up debug logging from SpritePass, SceneCollector, UIButton, BgfxDevice

The root cause was that UITree couldn't access array children in JSON layouts.
UIButton hover/click now works correctly in both test files.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2026-01-05 18:23:16 +07:00

319 lines
12 KiB
C++

#include <grove/SequentialModuleSystem.h>
#include <grove/JsonDataNode.h>
#include <stdexcept>
#include <logger/Logger.h>
namespace grove {
SequentialModuleSystem::SequentialModuleSystem() {
logger = stillhammer::createDomainLogger("SequentialModuleSystem", "engine");
logSystemStart();
lastProcessTime = std::chrono::high_resolution_clock::now();
}
SequentialModuleSystem::~SequentialModuleSystem() {
// IMPORTANT: During static destruction order on Windows (especially MinGW GCC 15),
// spdlog's registry may be destroyed BEFORE this destructor runs.
// Using a destroyed logger causes STATUS_STACK_BUFFER_OVERRUN (0xc0000409).
// We must check if our logger is still valid before using it.
bool loggerValid = false;
try {
// Check if spdlog registry still exists and our logger is registered
loggerValid = logger && spdlog::get(logger->name()) != nullptr;
} catch (...) {
// spdlog registry may throw during destruction
loggerValid = false;
}
if (loggerValid) {
logger->info("🔧 SequentialModuleSystem destructor called");
if (module) {
logger->info("📊 Final performance metrics:");
logger->info(" Total process calls: {}", processCallCount);
logger->info(" Total process time: {:.2f}ms", totalProcessTime);
logger->info(" Average process time: {:.3f}ms", getAverageProcessTime());
logger->info(" Total task executions: {}", taskExecutionCount);
}
logger->trace("🏗️ SequentialModuleSystem destroyed");
}
// Explicitly reset module before logger destruction to ensure proper cleanup order
module.reset();
}
// IModuleSystem implementation
void SequentialModuleSystem::registerModule(const std::string& name, std::unique_ptr<IModule> newModule) {
logger->info("🔧 Registering module '{}' in SequentialModuleSystem", name);
if (module) {
logger->warn("⚠️ Replacing existing module '{}' with '{}'", moduleName, name);
try {
module->shutdown();
logger->debug("✅ Previous module shut down successfully");
} catch (const std::exception& e) {
logger->error("❌ Error shutting down previous module: {}", e.what());
}
}
if (!newModule) {
logger->error("❌ Cannot register null module");
throw std::invalid_argument("Cannot register null module");
}
module = std::move(newModule);
moduleName = name;
logger->info("✅ Module '{}' registered successfully", moduleName);
// Reset performance metrics for new module
resetPerformanceMetrics();
logger->debug("📊 Performance metrics reset for new module");
}
void SequentialModuleSystem::processModules(float deltaTime) {
logProcessStart(deltaTime);
auto processStartTime = std::chrono::high_resolution_clock::now();
try {
validateModule();
// Create input IDataNode for module
nlohmann::json inputJson = {
{"deltaTime", deltaTime},
{"frameCount", processCallCount},
{"system", "sequential"},
{"timestamp", std::chrono::duration_cast<std::chrono::milliseconds>(
processStartTime.time_since_epoch()).count()}
};
auto moduleInput = std::make_unique<JsonDataNode>("input", inputJson);
logger->trace("📥 Calling module process() with deltaTime: {:.3f}ms", deltaTime * 1000);
// Process the module
module->process(*moduleInput);
processCallCount++;
auto processEndTime = std::chrono::high_resolution_clock::now();
lastProcessDuration = std::chrono::duration<float, std::milli>(processEndTime - processStartTime).count();
totalProcessTime += lastProcessDuration;
logProcessEnd(lastProcessDuration);
// Check for performance warnings
if (lastProcessDuration > 16.67f) { // More than 60fps budget
logger->warn("🐌 Slow module processing: {:.2f}ms (target: <16.67ms for 60fps)", lastProcessDuration);
}
logger->trace("✅ Module processing completed successfully");
} catch (const std::exception& e) {
logger->error("❌ Error processing module '{}': {}", moduleName, e.what());
logger->error("🔍 Error occurred at frame {}, deltaTime: {:.3f}ms", processCallCount, deltaTime * 1000);
auto processEndTime = std::chrono::high_resolution_clock::now();
lastProcessDuration = std::chrono::duration<float, std::milli>(processEndTime - processStartTime).count();
logProcessEnd(lastProcessDuration);
throw;
}
}
void SequentialModuleSystem::setIOLayer(std::unique_ptr<IIO> io) {
logger->info("🌐 Setting IO layer for SequentialModuleSystem");
ioLayer = std::move(io);
logger->debug("✅ IO layer set successfully");
}
std::unique_ptr<IDataNode> SequentialModuleSystem::queryModule(const std::string& name, const IDataNode& input) {
logger->debug("🔍 Querying module '{}' directly", name);
if (name != moduleName) {
logger->warn("⚠️ Query for module '{}' but loaded module is '{}'", name, moduleName);
}
validateModule();
try {
// Clone input for processing
// Note: We need to pass the input directly since IDataNode doesn't have clone yet
logger->trace("📥 Querying module with input");
// Process and return result
// Since process() is void, we get state as result
module->process(input);
auto result = module->getState();
logger->debug("✅ Module query completed");
return result;
} catch (const std::exception& e) {
logger->error("❌ Error querying module '{}': {}", name, e.what());
throw;
}
}
ModuleSystemType SequentialModuleSystem::getType() const {
logger->trace("🏷️ ModuleSystem type requested: SEQUENTIAL");
return ModuleSystemType::SEQUENTIAL;
}
int SequentialModuleSystem::getPendingTaskCount(const std::string& moduleName) const {
// SequentialModuleSystem executes tasks immediately, so never has pending tasks
logger->trace("🔍 Pending task count for '{}': 0 (sequential execution)", moduleName);
return 0;
}
// ITaskScheduler implementation
void SequentialModuleSystem::scheduleTask(const std::string& taskType, std::unique_ptr<IDataNode> taskData) {
logger->debug("⚙️ Task scheduled for immediate execution: '{}'", taskType);
logTaskExecution(taskType, *taskData);
try {
// In sequential system, tasks execute immediately
logger->trace("🔧 Executing task '{}' immediately", taskType);
// TODO: Implement actual task execution logic
// For now, we just log and count
taskExecutionCount++;
logger->debug("✅ Task '{}' completed immediately", taskType);
} catch (const std::exception& e) {
logger->error("❌ Error executing task '{}': {}", taskType, e.what());
throw;
}
}
int SequentialModuleSystem::hasCompletedTasks() const {
// Sequential system executes tasks immediately, so no completed tasks queue
logger->trace("🔍 Completed tasks count requested: 0 (sequential execution)");
return 0;
}
std::unique_ptr<IDataNode> SequentialModuleSystem::getCompletedTask() {
logger->warn("⚠️ getCompletedTask() called on sequential system - no queued tasks");
throw std::runtime_error("SequentialModuleSystem executes tasks immediately - no completed tasks queue");
}
// Debug and monitoring methods
nlohmann::json SequentialModuleSystem::getPerformanceMetrics() const {
logger->debug("📊 Performance metrics requested");
nlohmann::json metrics = {
{"system_type", "sequential"},
{"module_name", moduleName},
{"process_calls", processCallCount},
{"total_process_time_ms", totalProcessTime},
{"average_process_time_ms", getAverageProcessTime()},
{"last_process_time_ms", lastProcessDuration},
{"task_executions", taskExecutionCount}
};
if (processCallCount > 0) {
auto currentTime = std::chrono::high_resolution_clock::now();
auto totalRunTime = std::chrono::duration<float>(currentTime - lastProcessTime).count();
metrics["total_runtime_seconds"] = totalRunTime;
metrics["average_fps"] = totalRunTime > 0 ? processCallCount / totalRunTime : 0.0f;
}
logger->trace("📄 Metrics JSON: {}", metrics.dump());
return metrics;
}
void SequentialModuleSystem::resetPerformanceMetrics() {
logger->debug("📊 Resetting performance metrics");
processCallCount = 0;
totalProcessTime = 0.0f;
lastProcessDuration = 0.0f;
taskExecutionCount = 0;
lastProcessTime = std::chrono::high_resolution_clock::now();
logger->trace("✅ Performance metrics reset");
}
float SequentialModuleSystem::getAverageProcessTime() const {
if (processCallCount == 0) return 0.0f;
return totalProcessTime / processCallCount;
}
size_t SequentialModuleSystem::getProcessCallCount() const {
return processCallCount;
}
size_t SequentialModuleSystem::getTaskExecutionCount() const {
return taskExecutionCount;
}
void SequentialModuleSystem::setLogLevel(spdlog::level::level_enum level) {
logger->info("🔧 Setting log level to: {}", spdlog::level::to_string_view(level));
logger->set_level(level);
}
// Hot-reload support
std::unique_ptr<IModule> SequentialModuleSystem::extractModule() {
logger->info("🔓 Extracting module from system");
if (!module) {
logger->warn("⚠️ No module to extract");
return nullptr;
}
auto extractedModule = std::move(module);
moduleName = "unknown";
logger->info("✅ Module extracted successfully");
return extractedModule;
}
// Private helper methods
void SequentialModuleSystem::logSystemStart() {
logger->info("================================================================");
logger->info("⚙️ SEQUENTIAL MODULE SYSTEM INITIALIZED");
logger->info("================================================================");
logger->info("🎯 System Type: SEQUENTIAL (Debug/Test mode)");
logger->info("🔧 Features: Immediate execution, comprehensive logging");
logger->info("📊 Performance: Single-threaded, deterministic");
logger->trace("🏗️ SequentialModuleSystem object created at: {}", static_cast<void*>(this));
}
void SequentialModuleSystem::logProcessStart(float deltaTime) {
logger->trace("🎬 Process call {} START - deltaTime: {:.3f}ms, module: '{}'",
processCallCount, deltaTime * 1000, moduleName);
}
void SequentialModuleSystem::logProcessEnd(float processTime) {
logger->trace("🏁 Process call {} END - processTime: {:.3f}ms", processCallCount, processTime);
// Log performance summary every 60 calls
if (processCallCount > 0 && processCallCount % 60 == 0) {
logger->debug("📊 Performance summary (frame {}): Avg: {:.3f}ms, Total: {:.1f}ms",
processCallCount, getAverageProcessTime(), totalProcessTime);
}
}
void SequentialModuleSystem::logTaskExecution(const std::string& taskType, const IDataNode& taskData) {
logger->trace("⚙️ Task execution {} - type: '{}'",
taskExecutionCount + 1, taskType);
// Log data if available
if (taskData.hasData()) {
logger->trace("📄 Task data: {}", taskData.getData()->toString());
}
}
void SequentialModuleSystem::validateModule() const {
if (!module) {
logger->error("❌ No module set - cannot process");
throw std::runtime_error("No module set in SequentialModuleSystem");
}
}
} // namespace grove