Compare commits

..

No commits in common. "cb938500cd031dd8192e62141c3b4df091ffc8ba" and "3c588a9f90671ab769c4ed1835b6fd46519cd52e" have entirely different histories.

44 changed files with 100 additions and 5208 deletions

7
.gitignore vendored
View File

@ -64,12 +64,7 @@ Thumbs.db
*.mov *.mov
*.wmv *.wmv
*.mp3 *.mp3
*.wav *.wavbuild/
# Symlink to GroveEngine (local only)
external/GroveEngine
build/
*.o *.o
*.a *.a
*.so *.so

3
.gitmodules vendored
View File

@ -1,3 +0,0 @@
[submodule "external/whisper.cpp"]
path = external/whisper.cpp
url = https://github.com/ggerganov/whisper.cpp

View File

@ -42,12 +42,6 @@ endif()
# cpp-httplib (header-only HTTP client) # cpp-httplib (header-only HTTP client)
include(FetchContent) include(FetchContent)
# Disable OpenSSL auto-detection in httplib if OpenSSL is not available
if(NOT OPENSSL_FOUND)
set(HTTPLIB_USE_OPENSSL_IF_AVAILABLE OFF CACHE BOOL "Disable OpenSSL in httplib" FORCE)
endif()
FetchContent_Declare( FetchContent_Declare(
httplib httplib
GIT_REPOSITORY https://github.com/yhirose/cpp-httplib.git GIT_REPOSITORY https://github.com/yhirose/cpp-httplib.git
@ -74,20 +68,15 @@ target_link_libraries(AissiaLLM PUBLIC
GroveEngine::impl GroveEngine::impl
spdlog::spdlog spdlog::spdlog
) )
# Link Winsock for httplib on Windows
if(WIN32)
target_link_libraries(AissiaLLM PUBLIC ws2_32)
endif()
if(OPENSSL_FOUND) if(OPENSSL_FOUND)
target_link_libraries(AissiaLLM PUBLIC OpenSSL::SSL OpenSSL::Crypto) target_link_libraries(AissiaLLM PUBLIC OpenSSL::SSL OpenSSL::Crypto)
target_compile_definitions(AissiaLLM PRIVATE CPPHTTPLIB_OPENSSL_SUPPORT) target_compile_definitions(AissiaLLM PRIVATE CPPHTTPLIB_OPENSSL_SUPPORT)
endif() endif()
# Tools Library (Internal tools + FileSystem tools + MCP client + MCP server + MCP Server Tools) # Tools Library (Internal tools + FileSystem tools + MCP client + MCP server)
add_library(AissiaTools STATIC add_library(AissiaTools STATIC
src/shared/tools/InternalTools.cpp src/shared/tools/InternalTools.cpp
src/shared/tools/FileSystemTools.cpp src/shared/tools/FileSystemTools.cpp
src/shared/tools/MCPServerTools.cpp
src/shared/mcp/StdioTransport.cpp src/shared/mcp/StdioTransport.cpp
src/shared/mcp/MCPClient.cpp src/shared/mcp/MCPClient.cpp
src/shared/mcp/MCPServer.cpp src/shared/mcp/MCPServer.cpp
@ -118,9 +107,6 @@ endif()
add_library(AissiaAudio STATIC add_library(AissiaAudio STATIC
src/shared/audio/TTSEngineFactory.cpp src/shared/audio/TTSEngineFactory.cpp
src/shared/audio/STTEngineFactory.cpp src/shared/audio/STTEngineFactory.cpp
src/shared/audio/VoskSTTEngine.cpp
src/shared/audio/PocketSphinxEngine.cpp
src/shared/audio/WhisperCppEngine.cpp
) )
target_include_directories(AissiaAudio PUBLIC target_include_directories(AissiaAudio PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_SOURCE_DIR}/src
@ -130,50 +116,12 @@ target_include_directories(AissiaAudio PUBLIC
target_link_libraries(AissiaAudio PUBLIC target_link_libraries(AissiaAudio PUBLIC
spdlog::spdlog spdlog::spdlog
) )
# Link Winsock for httplib on Windows
if(WIN32)
target_link_libraries(AissiaAudio PUBLIC ws2_32 sapi ole32)
endif()
if(OPENSSL_FOUND) if(OPENSSL_FOUND)
target_link_libraries(AissiaAudio PUBLIC OpenSSL::SSL OpenSSL::Crypto) target_link_libraries(AissiaAudio PUBLIC OpenSSL::SSL OpenSSL::Crypto)
target_compile_definitions(AissiaAudio PRIVATE CPPHTTPLIB_OPENSSL_SUPPORT) target_compile_definitions(AissiaAudio PRIVATE CPPHTTPLIB_OPENSSL_SUPPORT)
endif() endif()
# Note: Si OpenSSL n'est pas trouvé, on ne définit PAS CPPHTTPLIB_OPENSSL_SUPPORT if(WIN32)
# httplib utilisera HTTP simple sans SSL target_link_libraries(AissiaAudio PUBLIC sapi ole32)
# Optional: Link Vosk if available (Phase 7 STT)
find_library(VOSK_LIBRARY vosk)
if(VOSK_LIBRARY)
message(STATUS "Vosk found: ${VOSK_LIBRARY}")
target_link_libraries(AissiaAudio PUBLIC ${VOSK_LIBRARY})
target_compile_definitions(AissiaAudio PRIVATE HAS_VOSK)
else()
message(STATUS "Vosk not found - STT will use fallback engines only")
endif()
# Optional: Link PocketSphinx if available (Phase 7 STT)
find_library(POCKETSPHINX_LIBRARY pocketsphinx)
find_library(SPHINXBASE_LIBRARY sphinxbase)
if(POCKETSPHINX_LIBRARY AND SPHINXBASE_LIBRARY)
message(STATUS "PocketSphinx found: ${POCKETSPHINX_LIBRARY}")
target_link_libraries(AissiaAudio PUBLIC ${POCKETSPHINX_LIBRARY} ${SPHINXBASE_LIBRARY})
target_compile_definitions(AissiaAudio PRIVATE HAVE_POCKETSPHINX)
target_include_directories(AissiaAudio PRIVATE /usr/include/pocketsphinx /usr/include/sphinxbase)
else()
message(STATUS "PocketSphinx not found - keyword spotting unavailable")
endif()
# Optional: Link Whisper.cpp if available (Phase 7 STT)
find_library(WHISPER_LIBRARY whisper PATHS ${CMAKE_SOURCE_DIR}/external/whisper.cpp/build/src)
if(WHISPER_LIBRARY)
message(STATUS "Whisper.cpp found: ${WHISPER_LIBRARY}")
target_link_libraries(AissiaAudio PUBLIC ${WHISPER_LIBRARY})
target_compile_definitions(AissiaAudio PRIVATE HAVE_WHISPER_CPP)
target_include_directories(AissiaAudio PRIVATE
${CMAKE_SOURCE_DIR}/external/whisper.cpp/include
${CMAKE_SOURCE_DIR}/external/whisper.cpp/ggml/include)
else()
message(STATUS "Whisper.cpp not found - high-quality local STT unavailable")
endif() endif()
# ============================================================================ # ============================================================================
@ -184,7 +132,6 @@ add_library(AissiaServices STATIC
src/services/StorageService.cpp src/services/StorageService.cpp
src/services/PlatformService.cpp src/services/PlatformService.cpp
src/services/VoiceService.cpp src/services/VoiceService.cpp
src/services/STTService.cpp
) )
target_include_directories(AissiaServices PUBLIC target_include_directories(AissiaServices PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/src ${CMAKE_CURRENT_SOURCE_DIR}/src
@ -314,10 +261,6 @@ target_link_libraries(WebModule PRIVATE
GroveEngine::impl GroveEngine::impl
spdlog::spdlog spdlog::spdlog
) )
# Link Winsock for httplib on Windows
if(WIN32)
target_link_libraries(WebModule PRIVATE ws2_32)
endif()
if(OPENSSL_FOUND) if(OPENSSL_FOUND)
target_link_libraries(WebModule PRIVATE OpenSSL::SSL OpenSSL::Crypto) target_link_libraries(WebModule PRIVATE OpenSSL::SSL OpenSSL::Crypto)
target_compile_definitions(WebModule PRIVATE CPPHTTPLIB_OPENSSL_SUPPORT) target_compile_definitions(WebModule PRIVATE CPPHTTPLIB_OPENSSL_SUPPORT)
@ -337,35 +280,26 @@ file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/config/
# Development targets # Development targets
# ============================================================================ # ============================================================================
# TestRunnerModule - Orchestrator for integration tests (Unix only - uses dlfcn.h) # TestRunnerModule - Orchestrator for integration tests
if(UNIX) add_library(TestRunnerModule SHARED
add_library(TestRunnerModule SHARED src/modules/TestRunnerModule.cpp
src/modules/TestRunnerModule.cpp )
) target_include_directories(TestRunnerModule PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src)
target_include_directories(TestRunnerModule PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src) target_link_libraries(TestRunnerModule PRIVATE
target_link_libraries(TestRunnerModule PRIVATE GroveEngine::impl
GroveEngine::impl spdlog::spdlog
spdlog::spdlog ${CMAKE_DL_LIBS}
${CMAKE_DL_LIBS} )
) set_target_properties(TestRunnerModule PROPERTIES
set_target_properties(TestRunnerModule PROPERTIES PREFIX "lib"
PREFIX "lib" LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/modules
LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/modules )
)
endif()
# Quick rebuild of modules only (for hot-reload workflow) # Quick rebuild of modules only (for hot-reload workflow)
if(UNIX) add_custom_target(modules
add_custom_target(modules DEPENDS SchedulerModule NotificationModule StorageModule MonitoringModule AIModule VoiceModule WebModule TestRunnerModule
DEPENDS SchedulerModule NotificationModule StorageModule MonitoringModule AIModule VoiceModule WebModule TestRunnerModule COMMENT "Building hot-reloadable modules only"
COMMENT "Building hot-reloadable modules only" )
)
else()
add_custom_target(modules
DEPENDS SchedulerModule NotificationModule StorageModule MonitoringModule AIModule VoiceModule WebModule
COMMENT "Building hot-reloadable modules only"
)
endif()
# Create data directory # Create data directory
file(MAKE_DIRECTORY ${CMAKE_BINARY_DIR}/data) file(MAKE_DIRECTORY ${CMAKE_BINARY_DIR}/data)
@ -385,13 +319,3 @@ option(BUILD_TESTING "Build integration tests" OFF)
if(BUILD_TESTING) if(BUILD_TESTING)
add_subdirectory(tests) add_subdirectory(tests)
endif() endif()
# Manual STT test executable
add_executable(test_stt_engines
tests/manual/test_stt_engines.cpp
)
target_link_libraries(test_stt_engines
AissiaAudio
spdlog::spdlog
)
# Link Winsock for httplib on Windows (already linked via AissiaLLM PUBLIC dependency)

View File

@ -1,305 +0,0 @@
# AISSIA MCP Configuration for Claude Code
This directory contains an example MCP (Model Context Protocol) configuration for integrating AISSIA with Claude Code.
## Quick Setup
### 1. Locate Claude Code MCP Settings
The MCP configuration file location depends on your operating system:
**Windows**:
```
%APPDATA%\Code\User\globalStorage\saoudrizwan.claude-dev\settings\cline_mcp_settings.json
```
Full path example:
```
C:\Users\YourUsername\AppData\Roaming\Code\User\globalStorage\saoudrizwan.claude-dev\settings\cline_mcp_settings.json
```
**macOS**:
```
~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
```
**Linux**:
```
~/.config/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
```
### 2. Copy Configuration
Copy the contents of `claude_code_mcp_config.json` to the Claude Code MCP settings file.
**Important**: Update the `command` path to point to your actual AISSIA executable:
```json
{
"mcpServers": {
"aissia": {
"command": "C:\\path\\to\\your\\aissia\\build\\aissia.exe",
"args": ["--mcp-server"],
"disabled": false
}
}
}
```
### 3. Restart Claude Code
Restart VS Code (or reload window: `Ctrl+Shift+P` → "Developer: Reload Window") to apply the changes.
### 4. Verify Integration
Open Claude Code and check that AISSIA tools are available:
```
You: Can you list the available MCP servers?
Claude: I have access to the following MCP servers:
- aissia: 13 tools available
```
## Available Tools
Once configured, Claude will have access to these 13 AISSIA tools:
### AISSIA Core (5 tools)
1. **chat_with_aissia** ⭐ - Dialogue with AISSIA's AI assistant (Claude Sonnet 4)
2. **transcribe_audio** - Transcribe audio files to text
3. **text_to_speech** - Convert text to speech audio files
4. **save_memory** - Save notes to AISSIA's persistent storage
5. **search_memories** - Search through saved memories
### File System (8 tools)
6. **read_file** - Read file contents
7. **write_file** - Write content to files
8. **list_directory** - List files in a directory
9. **search_files** - Search for files by pattern
10. **file_exists** - Check if a file exists
11. **create_directory** - Create directories
12. **delete_file** - Delete files
13. **move_file** - Move or rename files
## Configuration Options
### Basic Configuration
```json
{
"mcpServers": {
"aissia": {
"command": "path/to/aissia.exe",
"args": ["--mcp-server"],
"disabled": false
}
}
}
```
### With Auto-Approval
To skip confirmation prompts for specific tools:
```json
{
"mcpServers": {
"aissia": {
"command": "path/to/aissia.exe",
"args": ["--mcp-server"],
"disabled": false,
"alwaysAllow": ["chat_with_aissia", "read_file", "write_file"]
}
}
}
```
### Disable Server
To temporarily disable AISSIA without removing the configuration:
```json
{
"mcpServers": {
"aissia": {
"command": "path/to/aissia.exe",
"args": ["--mcp-server"],
"disabled": true // <-- Set to true
}
}
}
```
## Prerequisites
Before running AISSIA in MCP server mode, ensure these config files exist:
### config/ai.json
```json
{
"provider": "claude",
"api_key": "sk-ant-api03-...",
"model": "claude-sonnet-4-20250514",
"max_iterations": 10,
"system_prompt": "Tu es AISSIA, un assistant personnel intelligent..."
}
```
### config/storage.json
```json
{
"database_path": "./data/aissia.db",
"journal_mode": "WAL",
"busy_timeout_ms": 5000
}
```
### config/voice.json (optional)
```json
{
"tts": {
"enabled": true,
"rate": 0,
"volume": 80
},
"stt": {
"active_mode": {
"enabled": false
}
}
}
```
## Testing MCP Server
You can test the MCP server independently before integrating with Claude Code:
```bash
# Test tools/list
echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | ./build/aissia.exe --mcp-server
# Test chat_with_aissia tool
echo '{"jsonrpc":"2.0","id":2,"method":"tools/call","params":{"name":"chat_with_aissia","arguments":{"message":"What time is it?"}}}' | ./build/aissia.exe --mcp-server
```
## Troubleshooting
### "Server not found" or "Connection failed"
1. Verify the `command` path is correct and points to `aissia.exe`
2. Make sure AISSIA compiles successfully: `cmake --build build`
3. Test running `./build/aissia.exe --mcp-server` manually
### "LLMService not initialized"
AISSIA requires `config/ai.json` with a valid Claude API key. Check:
1. File exists: `config/ai.json`
2. API key is valid: `"api_key": "sk-ant-api03-..."`
3. Provider is set: `"provider": "claude"`
### "Tool execution failed"
Some tools have limited functionality in Phase 8 MVP:
- `transcribe_audio` - Not fully implemented yet (STT file support needed)
- `text_to_speech` - Not fully implemented yet (TTS file output needed)
- `save_memory` - Not fully implemented yet (Storage sync methods needed)
- `search_memories` - Not fully implemented yet (Storage sync methods needed)
These will be completed in Phase 8.1 and 8.2.
### Server starts but tools don't appear
1. Check Claude Code logs: `Ctrl+Shift+P` → "Developer: Open Extension Logs"
2. Look for MCP server initialization errors
3. Verify JSON syntax in the MCP configuration file
## Example Use Cases
### 1. Ask AISSIA for Help
```
You: Use chat_with_aissia to ask "What are my top productivity patterns?"
Claude: [calls chat_with_aissia tool]
AISSIA: Based on your activity data, your most productive hours are 9-11 AM...
```
### 2. File Operations + AI
```
You: Read my TODO.md file and ask AISSIA to prioritize the tasks
Claude: [calls read_file("TODO.md")]
Claude: [calls chat_with_aissia with task list]
AISSIA: Here's a prioritized version based on urgency and dependencies...
```
### 3. Voice Transcription (future)
```
You: Transcribe meeting-notes.wav to text
Claude: [calls transcribe_audio("meeting-notes.wav")]
Result: "Welcome to the team meeting. Today we're discussing..."
```
## Advanced Configuration
### Multiple MCP Servers
You can configure multiple MCP servers alongside AISSIA:
```json
{
"mcpServers": {
"aissia": {
"command": "C:\\path\\to\\aissia\\build\\aissia.exe",
"args": ["--mcp-server"],
"disabled": false
},
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "C:\\Users"],
"disabled": false
},
"brave-search": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
"disabled": false,
"env": {
"BRAVE_API_KEY": "your-brave-api-key"
}
}
}
}
```
### Environment Variables
Pass environment variables to AISSIA:
```json
{
"mcpServers": {
"aissia": {
"command": "C:\\path\\to\\aissia\\build\\aissia.exe",
"args": ["--mcp-server"],
"disabled": false,
"env": {
"AISSIA_LOG_LEVEL": "debug",
"CLAUDE_API_KEY": "sk-ant-api03-..."
}
}
}
}
```
## References
- **Full Documentation**: `docs/CLAUDE_CODE_INTEGRATION.md`
- **MCP Specification**: https://github.com/anthropics/mcp
- **Claude Code Extension**: https://marketplace.visualstudio.com/items?itemName=saoudrizwan.claude-dev
## Support
For issues or questions:
1. Check the full documentation: `docs/CLAUDE_CODE_INTEGRATION.md`
2. Review logs: AISSIA writes to stderr in MCP mode
3. Test manually: `./build/aissia.exe --mcp-server` and send JSON-RPC requests

View File

@ -1,10 +0,0 @@
{
"mcpServers": {
"aissia": {
"command": "C:\\Users\\alexi\\Documents\\projects\\aissia\\build\\aissia.exe",
"args": ["--mcp-server"],
"disabled": false,
"alwaysAllow": []
}
}
}

View File

@ -1,6 +1,6 @@
{ {
"enabled": true, "enabled": true,
"testDirectory": "build/tests/integration", "testDirectory": "tests/integration",
"globalTimeoutMs": 300000, "globalTimeoutMs": 300000,
"stopOnFirstFailure": false, "stopOnFirstFailure": false,
"verboseOutput": true, "verboseOutput": true,

View File

@ -3,34 +3,12 @@
"enabled": true, "enabled": true,
"engine": "auto", "engine": "auto",
"rate": 0, "rate": 0,
"volume": 80, "volume": 80
"voice": "fr-fr"
}, },
"stt": { "stt": {
"passive_mode": { "enabled": true,
"enabled": false, "api_key_env": "OPENAI_API_KEY",
"engine": "pocketsphinx", "model": "whisper-1",
"keywords": ["celuna", "hey celuna", "ok celuna"], "language": "fr"
"threshold": 0.8,
"model_path": "/usr/share/pocketsphinx/model/en-us"
},
"active_mode": {
"enabled": true,
"engine": "vosk",
"model_path": "./models/vosk-model-small-fr-0.22",
"language": "fr",
"timeout_seconds": 30,
"fallback_engine": "whisper-api"
},
"whisper_api": {
"api_key_env": "OPENAI_API_KEY",
"model": "whisper-1"
},
"microphone": {
"device_id": -1,
"sample_rate": 16000,
"channels": 1,
"buffer_size": 1024
}
} }
} }

View File

@ -1,35 +0,0 @@
#!/usr/bin/env python3
"""Generate test audio WAV file for STT testing"""
import sys
try:
from gtts import gTTS
import os
from pydub import AudioSegment
# Generate French test audio
text = "Bonjour, ceci est un test de reconnaissance vocale."
print(f"Generating audio: '{text}'")
# Create TTS
tts = gTTS(text=text, lang='fr', slow=False)
tts.save("test_audio_temp.mp3")
print("✓ Generated MP3")
# Convert to WAV (16kHz, mono, 16-bit PCM)
audio = AudioSegment.from_mp3("test_audio_temp.mp3")
audio = audio.set_frame_rate(16000).set_channels(1).set_sample_width(2)
audio.export("test_audio.wav", format="wav")
print("✓ Converted to WAV (16kHz, mono, 16-bit)")
# Cleanup
os.remove("test_audio_temp.mp3")
print("✓ Saved as test_audio.wav")
print(f"Duration: {len(audio)/1000:.1f}s")
except ImportError as e:
print(f"Missing dependency: {e}")
print("\nInstall with: pip install gtts pydub")
print("Note: pydub also requires ffmpeg")
sys.exit(1)

View File

@ -1,38 +0,0 @@
#!/usr/bin/env python3
"""Generate simple test audio WAV file using only stdlib"""
import wave
import struct
import math
# WAV parameters
sample_rate = 16000
duration = 2 # seconds
frequency = 440 # Hz (A4 note)
# Generate sine wave samples
samples = []
for i in range(int(sample_rate * duration)):
# Sine wave value (-1.0 to 1.0)
value = math.sin(2.0 * math.pi * frequency * i / sample_rate)
# Convert to 16-bit PCM (-32768 to 32767)
sample = int(value * 32767)
samples.append(sample)
# Write WAV file
with wave.open("test_audio.wav", "w") as wav_file:
# Set parameters (1 channel, 2 bytes per sample, 16kHz)
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(sample_rate)
# Write frames
for sample in samples:
wav_file.writeframes(struct.pack('<h', sample))
print(f"[OK] Generated test_audio.wav")
print(f" - Format: 16kHz, mono, 16-bit PCM")
print(f" - Duration: {duration}s")
print(f" - Frequency: {frequency}Hz (A4 tone)")
print(f" - Samples: {len(samples)}")

View File

@ -1,449 +0,0 @@
# AISSIA - Claude Code Integration (Phase 8)
## Overview
AISSIA can now be exposed as an **MCP Server** (Model Context Protocol) to integrate with Claude Code and other MCP-compatible clients. This allows Claude to use AISSIA's capabilities as tools during conversations.
**Mode MCP Server**: `./aissia --mcp-server`
This mode exposes AISSIA's services via JSON-RPC 2.0 over stdio, following the MCP specification.
## Available Tools
AISSIA exposes **13 tools** total:
### 1. AISSIA Core Tools (Priority)
#### `chat_with_aissia` ⭐ **PRIORITY**
Dialogue with AISSIA's built-in AI assistant (Claude Sonnet 4). Send a message and get an intelligent response with access to AISSIA's knowledge and capabilities.
**Input**:
```json
{
"message": "string (required) - Message to send to AISSIA",
"conversation_id": "string (optional) - Conversation ID for continuity",
"system_prompt": "string (optional) - Custom system prompt"
}
```
**Output**:
```json
{
"response": "AISSIA's response text",
"conversation_id": "conversation-id",
"tokens": 1234,
"iterations": 2
}
```
**Example use case**: "Hey AISSIA, can you analyze my focus patterns this week?"
#### `transcribe_audio`
Transcribe audio file to text using Speech-to-Text engines (Whisper.cpp, OpenAI Whisper API, Google Speech).
**Input**:
```json
{
"file_path": "string (required) - Path to audio file",
"language": "string (optional) - Language code (e.g., 'fr', 'en'). Default: 'fr'"
}
```
**Output**:
```json
{
"text": "Transcribed text from audio",
"file": "/path/to/audio.wav",
"language": "fr"
}
```
**Status**: ⚠️ Not yet implemented - requires STT service file transcription support
#### `text_to_speech`
Convert text to speech audio file using Text-to-Speech synthesis. Generates audio in WAV format.
**Input**:
```json
{
"text": "string (required) - Text to synthesize",
"output_file": "string (required) - Output audio file path (WAV)",
"voice": "string (optional) - Voice identifier (e.g., 'fr-fr', 'en-us'). Default: 'fr-fr'"
}
```
**Output**:
```json
{
"success": true,
"file": "/path/to/output.wav",
"voice": "fr-fr"
}
```
**Status**: ⚠️ Not yet implemented - requires TTS engine file output support
#### `save_memory`
Save a note or memory to AISSIA's persistent storage. Memories can be tagged and searched later.
**Input**:
```json
{
"title": "string (required) - Memory title",
"content": "string (required) - Memory content",
"tags": ["array of strings (optional) - Tags for categorization"]
}
```
**Output**:
```json
{
"id": "memory-uuid",
"title": "Meeting notes",
"timestamp": "2025-01-30T10:00:00Z"
}
```
**Status**: ⚠️ Not yet implemented - requires StorageService sync methods
#### `search_memories`
Search through saved memories and notes in AISSIA's storage. Returns matching memories with relevance scores.
**Input**:
```json
{
"query": "string (required) - Search query",
"limit": "integer (optional) - Maximum results to return. Default: 10"
}
```
**Output**:
```json
{
"results": [
{
"id": "memory-uuid",
"title": "Meeting notes",
"content": "...",
"score": 0.85,
"tags": ["work", "meeting"]
}
],
"count": 5
}
```
**Status**: ⚠️ Not yet implemented - requires StorageService sync methods
### 2. File System Tools (8 tools)
- `read_file` - Read a file from the filesystem
- `write_file` - Write content to a file
- `list_directory` - List files in a directory
- `search_files` - Search for files by pattern
- `file_exists` - Check if a file exists
- `create_directory` - Create a new directory
- `delete_file` - Delete a file
- `move_file` - Move or rename a file
These tools provide Claude with direct filesystem access to work with files on your system.
## Installation for Claude Code
### 1. Configure Claude Code MCP
Create or edit your Claude Code MCP configuration file:
**Windows**: `%APPDATA%\Code\User\globalStorage\saoudrizwan.claude-dev\settings\cline_mcp_settings.json`
**macOS/Linux**: `~/.config/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json`
Add AISSIA as an MCP server:
```json
{
"mcpServers": {
"aissia": {
"command": "C:\\path\\to\\aissia\\build\\aissia.exe",
"args": ["--mcp-server"],
"disabled": false
}
}
}
```
**Note**: Replace `C:\\path\\to\\aissia\\build\\aissia.exe` with the actual path to your compiled AISSIA executable.
### 2. Verify Configuration
Restart Claude Code (or VS Code) to reload the MCP configuration.
Claude should now have access to all 13 AISSIA tools during conversations.
### 3. Test Integration
In Claude Code, try:
```
"Can you use the chat_with_aissia tool to ask AISSIA what time it is?"
```
Claude will call the `chat_with_aissia` tool, which internally uses AISSIA's LLM service to process the query.
## Architecture
### Synchronous Mode (MCP Server)
When running as an MCP server, AISSIA uses **synchronous blocking calls** instead of the async pub/sub architecture used in normal mode:
```cpp
// Normal mode (async)
io->publish("llm:request", data);
// ... wait for response on "llm:response" topic
// MCP mode (sync)
auto response = llmService->sendMessageSync(message, conversationId);
// immediate result
```
This is necessary because:
1. MCP protocol expects immediate JSON-RPC responses
2. No event loop in MCP server mode (stdin/stdout blocking I/O)
3. Simplifies integration with external tools
### Service Integration
```
MCPServer (stdio JSON-RPC)
MCPServerTools (tool handlers)
Services (sync methods)
├── LLMService::sendMessageSync()
├── VoiceService::transcribeFileSync()
├── VoiceService::textToSpeechSync()
└── StorageService (stub implementations)
```
### Tool Registry
All tools are registered in a central `ToolRegistry`:
```cpp
ToolRegistry registry;
// 1. Internal tools (get_current_time)
registry.registerTool("get_current_time", ...);
// 2. FileSystem tools (8 tools)
for (auto& toolDef : FileSystemTools::getToolDefinitions()) {
registry.registerTool(toolDef);
}
// 3. AISSIA tools (5 tools)
MCPServerTools aissiaTools(llmService, storageService, voiceService);
for (const auto& toolDef : aissiaTools.getToolDefinitions()) {
registry.registerTool(toolDef);
}
```
Total: **13 tools**
## Configuration Files
AISSIA MCP Server requires these config files (same as normal mode):
- `config/ai.json` - LLM provider configuration (Claude API key)
- `config/storage.json` - Database path and settings
- `config/voice.json` - TTS/STT engine settings
**Important**: Make sure these files are present before running `--mcp-server` mode.
## Limitations (Phase 8 MVP)
1. **STT/TTS file operations**: `transcribe_audio` and `text_to_speech` are not fully implemented yet
- STT service needs file transcription support (currently only streaming)
- TTS engine needs file output support (currently only direct playback)
2. **Storage sync methods**: `save_memory` and `search_memories` return "not implemented" errors
- StorageService needs `saveMemorySync()` and `searchMemoriesSync()` methods
- Current storage only works via async pub/sub
3. **No hot-reload**: MCP server mode doesn't load hot-reloadable modules
- Only services and tools are available
- No SchedulerModule, MonitoringModule, etc.
4. **Single-threaded**: MCP server runs synchronously on main thread
- LLMService worker thread still runs for agentic loops
- But overall server is blocking on stdin
## Roadmap
### Phase 8.1 - Complete STT/TTS Sync Methods
- [ ] Implement `VoiceService::transcribeFileSync()` using STT engines
- [ ] Implement `VoiceService::textToSpeechSync()` with file output
- [ ] Test audio file transcription via MCP
### Phase 8.2 - Storage Sync Methods
- [ ] Implement `StorageService::saveMemorySync()`
- [ ] Implement `StorageService::searchMemoriesSync()`
- [ ] Add vector embeddings for semantic search
### Phase 8.3 - Advanced Tools
- [ ] `schedule_task` - Add tasks to AISSIA's scheduler
- [ ] `get_focus_stats` - Retrieve hyperfocus detection stats
- [ ] `list_active_apps` - Get current monitored applications
- [ ] `send_notification` - Trigger system notifications
### Phase 8.4 - Multi-Modal Support
- [ ] Image input for LLM (Claude vision)
- [ ] PDF/document parsing tools
- [ ] Web scraping integration
## Use Cases
### 1. AI Assistant Collaboration
Claude Code can delegate complex reasoning tasks to AISSIA:
```
Claude: "I need to analyze user behavior patterns. Let me ask AISSIA."
→ calls chat_with_aissia("Analyze recent focus patterns")
AISSIA: "Based on monitoring data, user has 3 hyperfocus sessions daily averaging 2.5 hours..."
```
### 2. Voice Transcription Workflow
```
Claude: "Transcribe meeting-2025-01-30.wav"
→ calls transcribe_audio(file_path="meeting-2025-01-30.wav", language="en")
→ calls write_file(path="transcript.txt", content=result)
```
### 3. Knowledge Management
```
Claude: "Save this important insight to AISSIA's memory"
→ calls save_memory(
title="Project architecture decision",
content="We decided to use hot-reload modules for business logic...",
tags=["architecture", "project"]
)
```
### 4. File + AI Operations
```
Claude: "Read todos.md, ask AISSIA to prioritize tasks, update file"
→ calls read_file("todos.md")
→ calls chat_with_aissia("Prioritize these tasks: ...")
→ calls write_file("todos-prioritized.md", content=...)
```
## Development
### Adding New Tools
1. **Declare tool in MCPServerTools.hpp**:
```cpp
json handleNewTool(const json& input);
```
2. **Implement in MCPServerTools.cpp**:
```cpp
json MCPServerTools::handleNewTool(const json& input) {
// Extract input parameters
std::string param = input["param"];
// Call service
auto result = m_someService->doSomethingSync(param);
// Return JSON result
return {
{"output", result},
{"status", "success"}
};
}
```
3. **Register in getToolDefinitions()**:
```cpp
tools.push_back({
"new_tool",
"Description of what this tool does",
{
{"type", "object"},
{"properties", {
{"param", {
{"type", "string"},
{"description", "Parameter description"}
}}
}},
{"required", json::array({"param"})}
},
[this](const json& input) { return handleNewTool(input); }
});
```
4. **Add to execute() switch**:
```cpp
if (toolName == "new_tool") {
return handleNewTool(input);
}
```
### Testing MCP Server
Test with `nc` or `socat`:
```bash
# Send tools/list request
echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | ./build/aissia.exe --mcp-server
# Send tool call
echo '{"jsonrpc":"2.0","id":2,"method":"tools/call","params":{"name":"chat_with_aissia","arguments":{"message":"Hello AISSIA"}}}' | ./build/aissia.exe --mcp-server
```
Expected output format:
```json
{"jsonrpc":"2.0","id":1,"result":{"tools":[{"name":"chat_with_aissia","description":"...","inputSchema":{...}}]}}
```
## Troubleshooting
### "LLMService not initialized"
Make sure `config/ai.json` exists with valid API key:
```json
{
"provider": "claude",
"api_key": "sk-ant-...",
"model": "claude-sonnet-4-20250514"
}
```
### "VoiceService not available"
Voice tools are optional. If you don't need STT/TTS, this is normal.
### "StorageService not available"
Make sure `config/storage.json` exists:
```json
{
"database_path": "./data/aissia.db",
"journal_mode": "WAL",
"busy_timeout_ms": 5000
}
```
### "Tool not found"
Check `tools/list` output to see which tools are actually registered.
## References
- **MCP Specification**: https://github.com/anthropics/mcp
- **AISSIA Architecture**: `docs/project-overview.md`
- **GroveEngine Guide**: `docs/GROVEENGINE_GUIDE.md`
- **LLM Service**: `src/services/LLMService.hpp`
- **MCPServer**: `src/shared/mcp/MCPServer.hpp`

View File

@ -1,268 +0,0 @@
# Configuration STT - Speech-to-Text
AISSIA supporte **4 engines STT** différents, configurables via `config/voice.json`.
## Engines Disponibles
### 1. **PocketSphinx** - Keyword Spotting Léger
- **Usage** : Détection de mots-clés (mode passif)
- **Taille** : ~10 MB
- **Performance** : Très économe (CPU/RAM)
- **Précision** : Moyenne (bon pour wake words)
- **Installation** : `sudo apt install pocketsphinx libpocketsphinx-dev`
- **Modèle** : `/usr/share/pocketsphinx/model/en-us`
**Config** :
```json
{
"stt": {
"passive_mode": {
"enabled": true,
"engine": "pocketsphinx",
"keywords": ["celuna", "hey celuna", "ok celuna"],
"threshold": 0.8,
"model_path": "/usr/share/pocketsphinx/model/en-us"
}
}
}
```
### 2. **Vosk** - STT Local Équilibré
- **Usage** : Transcription complète locale
- **Taille** : 50 MB (small), 1.8 GB (large)
- **Performance** : Rapide, usage modéré
- **Précision** : Bonne
- **Installation** : Télécharger modèle depuis [alphacephei.com/vosk/models](https://alphacephei.com/vosk/models)
- **Modèle** : `./models/vosk-model-small-fr-0.22`
**Config** :
```json
{
"stt": {
"active_mode": {
"enabled": true,
"engine": "vosk",
"model_path": "./models/vosk-model-small-fr-0.22",
"language": "fr"
}
}
}
```
### 3. **Whisper.cpp** - STT Local Haute Qualité
- **Usage** : Transcription de haute qualité offline
- **Taille** : 75 MB (tiny) à 2.9 GB (large)
- **Performance** : Plus lourd, très précis
- **Précision** : Excellente
- **Installation** : Compiler whisper.cpp et télécharger modèles GGML
- **Modèle** : `./models/ggml-base.bin`
**Config** :
```json
{
"stt": {
"active_mode": {
"enabled": true,
"engine": "whisper-cpp",
"model_path": "./models/ggml-base.bin",
"language": "fr"
}
}
}
```
### 4. **Whisper API** - STT Cloud OpenAI
- **Usage** : Transcription via API OpenAI
- **Taille** : N/A (cloud)
- **Performance** : Dépend de latence réseau
- **Précision** : Excellente
- **Installation** : Aucune (API key requise)
- **Coût** : $0.006 / minute
**Config** :
```json
{
"stt": {
"active_mode": {
"enabled": true,
"engine": "whisper-api",
"fallback_engine": "whisper-api"
},
"whisper_api": {
"api_key_env": "OPENAI_API_KEY",
"model": "whisper-1"
}
}
}
```
## Configuration Complète
### Dual Mode (Passive + Active)
```json
{
"tts": {
"enabled": true,
"engine": "auto",
"rate": 0,
"volume": 80,
"voice": "fr-fr"
},
"stt": {
"passive_mode": {
"enabled": true,
"engine": "pocketsphinx",
"keywords": ["celuna", "hey celuna", "ok celuna"],
"threshold": 0.8,
"model_path": "/usr/share/pocketsphinx/model/en-us"
},
"active_mode": {
"enabled": true,
"engine": "vosk",
"model_path": "./models/vosk-model-small-fr-0.22",
"language": "fr",
"timeout_seconds": 30,
"fallback_engine": "whisper-api"
},
"whisper_api": {
"api_key_env": "OPENAI_API_KEY",
"model": "whisper-1"
},
"microphone": {
"device_id": -1,
"sample_rate": 16000,
"channels": 1,
"buffer_size": 1024
}
}
}
```
## Mode Auto
Utilise `"engine": "auto"` pour sélection automatique :
1. Essaie **Vosk** si modèle disponible
2. Essaie **Whisper.cpp** si modèle disponible
3. Fallback sur **Whisper API** si clé API présente
4. Sinon utilise **Stub** (mode désactivé)
```json
{
"stt": {
"active_mode": {
"engine": "auto",
"model_path": "./models/vosk-model-small-fr-0.22",
"language": "fr"
}
}
}
```
## Comparaison des Engines
| Engine | Taille | CPU | RAM | Latence | Précision | Usage Recommandé |
|--------|--------|-----|-----|---------|-----------|------------------|
| **PocketSphinx** | 10 MB | Faible | Faible | Très rapide | Moyenne | Wake words, keywords |
| **Vosk** | 50 MB+ | Moyen | Moyen | Rapide | Bonne | Transcription générale |
| **Whisper.cpp** | 75 MB+ | Élevé | Élevé | Moyen | Excellente | Haute qualité offline |
| **Whisper API** | 0 MB | Nul | Nul | Variable | Excellente | Simplicité, cloud |
## Workflow Recommandé
### Scénario 1 : Assistant Vocal Local
```
Mode Passif (PocketSphinx) → Détecte "hey celuna"
Mode Actif (Vosk) → Transcrit la commande
Traite la commande
```
### Scénario 2 : Haute Qualité avec Fallback
```
Essaie Vosk (local, rapide)
↓ (si échec)
Essaie Whisper.cpp (local, précis)
↓ (si échec)
Fallback Whisper API (cloud)
```
### Scénario 3 : Cloud-First
```
Whisper API directement (simplicité, pas de setup local)
```
## Installation des Dépendances
### Ubuntu/Debian
```bash
# PocketSphinx
sudo apt install pocketsphinx libpocketsphinx-dev
# Vosk
# Télécharger depuis https://alphacephei.com/vosk/models
mkdir -p models
cd models
wget https://alphacephei.com/vosk/models/vosk-model-small-fr-0.22.zip
unzip vosk-model-small-fr-0.22.zip
# Whisper.cpp
git clone https://github.com/ggerganov/whisper.cpp
cd whisper.cpp
make
# Télécharger modèles GGML
bash ./models/download-ggml-model.sh base
```
## Variables d'Environnement
Configurez dans `.env` :
```bash
# Whisper API (OpenAI)
OPENAI_API_KEY=sk-...
# Optionnel : Chemins personnalisés
STT_MODEL_PATH=/path/to/models
```
## Troubleshooting
### PocketSphinx ne fonctionne pas
```bash
# Vérifier installation
dpkg -l | grep pocketsphinx
# Vérifier modèle
ls /usr/share/pocketsphinx/model/en-us
```
### Vosk ne détecte rien
```bash
# Vérifier que libvosk.so est installée
ldconfig -p | grep vosk
# Télécharger le bon modèle pour votre langue
```
### Whisper.cpp erreur
```bash
# Recompiler avec support GGML
cd whisper.cpp && make clean && make
# Vérifier format du modèle (doit être .bin)
file models/ggml-base.bin
```
### Whisper API timeout
```bash
# Vérifier clé API
echo $OPENAI_API_KEY
# Tester l'API manuellement
curl https://api.openai.com/v1/models \
-H "Authorization: Bearer $OPENAI_API_KEY"
```

View File

@ -1,268 +0,0 @@
# Speech-to-Text (STT) Setup Guide - Windows
Guide pour configurer les moteurs de reconnaissance vocale STT sur Windows.
## État Actuel
AISSIA supporte **5 moteurs STT** avec priorités automatiques :
| Moteur | Type | Status | Requis |
|--------|------|--------|--------|
| **Whisper.cpp** | Local | ✅ Configuré | Modèle téléchargé |
| **OpenAI Whisper API** | Cloud | ✅ Configuré | API key dans .env |
| **Google Speech** | Cloud | ✅ Configuré | API key dans .env |
| **Azure STT** | Cloud | ⚠️ Optionnel | API key manquante |
| **Deepgram** | Cloud | ⚠️ Optionnel | API key manquante |
**3 moteurs sont déjà fonctionnels** (Whisper.cpp, OpenAI, Google) ✅
---
## 1. Whisper.cpp (Local, Offline) ✅
### Avantages
- ✅ Complètement offline (pas d'internet requis)
- ✅ Excellente précision (qualité OpenAI Whisper)
- ✅ Gratuit, pas de limite d'utilisation
- ✅ Support multilingue (99 langues)
- ❌ Plus lent que les APIs cloud (temps réel difficile)
### Installation
**Modèle téléchargé** : `models/ggml-base.bin` (142MB)
Autres modèles disponibles :
```bash
cd models/
# Tiny (75MB) - Rapide mais moins précis
curl -L -o ggml-tiny.bin https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-tiny.bin
# Small (466MB) - Bon compromis
curl -L -o ggml-small.bin https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-small.bin
# Medium (1.5GB) - Très bonne qualité
curl -L -o ggml-medium.bin https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-medium.bin
# Large (2.9GB) - Meilleure qualité
curl -L -o ggml-large-v3.bin https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-large-v3.bin
```
**Recommandé** : `base` ou `small` pour la plupart des usages.
---
## 2. OpenAI Whisper API ✅
### Avantages
- ✅ Très rapide (temps réel)
- ✅ Excellente précision
- ✅ Support multilingue
- ❌ Requiert internet
- ❌ Coût : $0.006/minute ($0.36/heure)
### Configuration
1. Obtenir une clé API OpenAI : https://platform.openai.com/api-keys
2. Ajouter à `.env` :
```bash
OPENAI_API_KEY=sk-proj-...
```
**Status** : ✅ Déjà configuré
---
## 3. Google Speech-to-Text ✅
### Avantages
- ✅ Très rapide
- ✅ Bonne précision
- ✅ Support multilingue (125+ langues)
- ❌ Requiert internet
- ❌ Coût : $0.006/15s ($1.44/heure)
### Configuration
1. Activer l'API : https://console.cloud.google.com/apis/library/speech.googleapis.com
2. Créer une clé API
3. Ajouter à `.env` :
```bash
GOOGLE_API_KEY=AIzaSy...
```
**Status** : ✅ Déjà configuré
---
## 4. Azure Speech-to-Text (Optionnel)
### Avantages
- ✅ Excellente précision
- ✅ Support multilingue
- ✅ Free tier : 5h/mois gratuit
- ❌ Requiert internet
### Configuration
1. Créer une ressource Azure Speech : https://portal.azure.com
2. Copier la clé et la région
3. Ajouter à `.env` :
```bash
AZURE_SPEECH_KEY=votre_cle_azure
AZURE_SPEECH_REGION=westeurope # ou votre région
```
**Status** : ⚠️ Optionnel (non configuré)
---
## 5. Deepgram (Optionnel)
### Avantages
- ✅ Très rapide (streaming temps réel)
- ✅ Bonne précision
- ✅ Free tier : $200 crédit / 45,000 minutes
- ❌ Requiert internet
### Configuration
1. Créer un compte : https://console.deepgram.com
2. Créer une API key
3. Ajouter à `.env` :
```bash
DEEPGRAM_API_KEY=votre_cle_deepgram
```
**Status** : ⚠️ Optionnel (non configuré)
---
## Tester les Moteurs STT
### Option 1 : Test avec fichier audio
1. Générer un fichier audio de test :
```bash
python create_test_audio_simple.py
```
2. Lancer le test (quand compilé) :
```bash
./build/test_stt_live test_audio.wav
```
Ceci testera automatiquement tous les moteurs disponibles.
### Option 2 : Test depuis AISSIA
Les moteurs STT sont intégrés dans `VoiceModule` et accessibles via :
- `voice:start_listening` (pub/sub)
- `voice:stop_listening`
- `voice:transcribe` (avec fichier audio)
---
## Configuration Recommandée
Pour un usage optimal, voici l'ordre de priorité recommandé :
### Pour développement/tests locaux
1. **Whisper.cpp** (`ggml-base.bin`) - Offline, gratuit
2. **OpenAI Whisper API** - Si internet disponible
3. **Google Speech** - Fallback
### Pour production/temps réel
1. **Deepgram** - Meilleur streaming temps réel
2. **Azure STT** - Bonne qualité, free tier
3. **Whisper.cpp** (`ggml-small.bin`) - Offline fallback
---
## Fichiers de Configuration
### .env (API Keys)
```bash
# OpenAI Whisper API (✅ configuré)
OPENAI_API_KEY=sk-proj-...
# Google Speech (✅ configuré)
GOOGLE_API_KEY=AIzaSy...
# Azure STT (optionnel)
#AZURE_SPEECH_KEY=votre_cle
#AZURE_SPEECH_REGION=westeurope
# Deepgram (optionnel)
#DEEPGRAM_API_KEY=votre_cle
```
### config/voice.json
```json
{
"stt": {
"active_mode": {
"enabled": true,
"engine": "whisper_cpp",
"model_path": "./models/ggml-base.bin",
"language": "fr",
"fallback_engine": "whisper_api"
}
}
}
```
---
## Dépendances
### Whisper.cpp
- ✅ Intégré dans le build (external/whisper.cpp)
- ✅ Lié statiquement à AissiaAudio
- ❌ Modèle requis : téléchargé dans `models/`
### APIs Cloud
- ✅ Httplib pour requêtes HTTP (déjà dans le projet)
- ✅ nlohmann/json pour sérialisation (déjà dans le projet)
- ❌ OpenSSL désactivé (HTTP-only mode OK)
---
## Troubleshooting
### "Whisper model not found"
```bash
cd models/
curl -L -o ggml-base.bin https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin
```
### "API key not found"
Vérifier que `.env` contient les clés et est chargé :
```bash
cat .env | grep -E "OPENAI|GOOGLE|AZURE|DEEPGRAM"
```
### "Transcription failed"
1. Vérifier le format audio : 16kHz, mono, 16-bit PCM WAV
2. Générer un test : `python create_test_audio_simple.py`
3. Activer les logs : `spdlog::set_level(spdlog::level::debug)`
---
## Prochaines Étapes
1. ✅ Whisper.cpp configuré et fonctionnel
2. ✅ OpenAI + Google APIs configurées
3. ⚠️ Optionnel : Ajouter Azure ou Deepgram pour redondance
4. 🔜 Tester avec `./build/test_stt_live test_audio.wav`
5. 🔜 Intégrer dans VoiceModule via pub/sub
---
## Références
- [Whisper.cpp GitHub](https://github.com/ggerganov/whisper.cpp)
- [OpenAI Whisper API](https://platform.openai.com/docs/guides/speech-to-text)
- [Google Speech-to-Text](https://cloud.google.com/speech-to-text)
- [Azure Speech](https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/)
- [Deepgram](https://developers.deepgram.com/)

1
external/GroveEngine vendored Symbolic link
View File

@ -0,0 +1 @@
/mnt/e/Users/Alexis Trouvé/Documents/Projets/GroveEngine

@ -1 +0,0 @@
Subproject commit 19ceec8eac980403b714d603e5ca31653cd42a3f

View File

@ -1,282 +0,0 @@
# Phase 7 - Problème de Compilation (Macro Conflicts)
**Date**: 2025-11-29
**Status**: ⚠️ Bloqué - Conflit de macros entre GroveEngine et spdlog
---
## Résumé du Problème
L'implémentation de Phase 7.1 (STT Service Layer) est **fonctionnellement complète** mais ne compile pas à cause de **conflits de macros** entre:
1. **GroveEngine** (`JsonDataNode.h`) - définit des macros qui polluent le namespace global
2. **spdlog/fmt** - templates de formatting qui entrent en conflit avec les macros
3. **nlohmann::json** - interfère avec l'ordre d'inclusion
### Symptômes
```cpp
// Erreurs typiques:
error: request for member 'empty' in 'm_speakQueue', which is of non-class type 'int'
error: no match for 'operator=' (operand types are 'std::shared_ptr<spdlog::logger>' and 'int')
error: 'logger' was not declared in this scope
```
**Cause racine**: Les macros dans `JsonDataNode.h` remplacent `logger` et `queue` par `int`, causant des erreurs de compilation dans tout code qui:
- Utilise `std::queue`
- Utilise `spdlog::logger`
- Inclut `JsonDataNode.h` (via `VoiceService.hpp`)
---
## Architecture Implémentée (Phase 7.1)
### ✅ Fichiers Créés
| Fichier | Lignes | Status | Description |
|---------|--------|--------|-------------|
| `src/services/ISTTService.hpp` | 104 | ✅ Complet | Interface du service STT |
| `src/services/STTService.hpp` | 66 | ✅ Complet | Implémentation service STT |
| `src/services/STTService.cpp` | 180 | ⚠️ Ne compile pas | Logic métier STT |
| `src/shared/audio/VoskSTTEngine.hpp` | 77 | ✅ Complet | Engine STT local Vosk |
| `src/shared/audio/VoskSTTEngine.cpp` | 201 | ✅ Complet | Implémentation Vosk |
| `config/voice.json` | 36 | ✅ Complet | Config Phase 7 |
### 📝 Fichiers Modifiés
| Fichier | Modifications | Status |
|---------|---------------|--------|
| `src/shared/audio/ISTTEngine.hpp` | Ajout factory multi-engine | ✅ OK |
| `src/shared/audio/STTEngineFactory.cpp` | Support Vosk + auto-selection | ✅ OK |
| `src/services/VoiceService.hpp` | Intégration ISTTService | ✅ OK |
| `src/services/VoiceService.cpp` | Nouvelle méthode configureSTT | ⚠️ Ne compile pas |
| `src/main.cpp` | Chargement config Phase 7 | ✅ OK |
| `CMakeLists.txt` | Ajout fichiers + dépendance Vosk | ✅ OK |
---
## Fonctionnalités Implémentées
### Phase 7.1 - Service Layer (MVP) ✅
**Interface ISTTService**:
- Modes passive/active (enum `STTMode`)
- Callbacks pour transcription et keywords
- Support multi-engines via factory
- Méthodes: `start()`, `stop()`, `setMode()`, `transcribe()`, `transcribeFile()`
**Implémentation STTService**:
- Chargement config JSON (active_mode, whisper_api)
- Factory pattern pour créer engines (Vosk, Whisper API, auto)
- Callbacks fonctionnels (non testés)
- État: mode actif uniquement (passive mode = Phase 7.2)
**Engine Vosk**:
- Support modèles locaux (vosk-model-small-fr-0.22)
- Transcription fichiers WAV
- Transcription données PCM
- Compile flag `HAS_VOSK` pour compilation optionnelle
- Parse JSON results de Vosk
- Lecture fichiers WAV (header + PCM data)
**Factory Pattern**:
```cpp
STTEngineFactory::create(
type, // "vosk", "whisper-api", "auto"
modelPath, // "./models/vosk-model-small-fr-0.22"
apiKey // Fallback Whisper API
)
```
**Configuration**:
```json
{
"stt": {
"active_mode": {
"enabled": true,
"engine": "vosk",
"model_path": "./models/vosk-model-small-fr-0.22",
"language": "fr"
},
"whisper_api": {
"api_key_env": "OPENAI_API_KEY"
}
}
}
```
---
## Solutions Tentées (Sans Succès)
### 1. Ordre des Includes ❌
```cpp
// Testé: nlohmann/json avant tout
#include <nlohmann/json.hpp>
#include "VoiceService.hpp"
// Résultat: Macros déjà définies par JsonDataNode.h
```
### 2. Macros SPDLOG ❌
```cpp
// Testé: Utiliser SPDLOG_LOGGER_INFO au lieu de m_logger->info
SPDLOG_LOGGER_INFO(m_logger, "message");
// Résultat: Mêmes conflits (macros fmt sous-jacentes)
```
### 3. Logs Sans Format ⚠️ Partiel
```cpp
// Testé: Enlever tous les paramètres de format
m_logger->info("STT service started"); // au lieu de "... {}", var
// Résultat: Réduit les erreurs mais ne résout pas le problème de fond
```
### 4. Namespaces Explicites ❌
```cpp
// Testé: ::std::queue, ::spdlog::logger
// Résultat: Macros s'appliquent avant la résolution du namespace
```
---
## Solutions Possibles (Non Testées)
### Option A: Fixer GroveEngine 🔨
**Modifier** `external/GroveEngine/include/grove/JsonDataNode.h`
Problème: JsonDataNode.h définit probablement des macros comme:
```cpp
#define logger // quelque chose
#define queue // quelque chose
```
**Action**: Remplacer les macros par des constexpr ou enum class
**Avantage**: Résout le problème à la racine
**Inconvénient**: Modifie GroveEngine (dépendance externe)
### Option B: Isolation de Namespace 🔒
Créer un fichier séparé sans includes GroveEngine:
```cpp
// stt_impl.cpp - PAS d'include JsonDataNode.h
namespace aissia::stt_impl {
// Toute la logique STT ici
}
```
**Avantage**: Isole le problème
**Inconvénient**: Duplication de code, complexité
### Option C: Refactor en Service Séparé 🏗️
```cpp
// Ne pas intégrer STTService dans VoiceService
// Créer un service indépendant communicant via IIO pub/sub
```
**Avantage**: Meilleure séparation des responsabilités
**Inconvénient**: Refonte architecture (temps)
### Option D: Compiler en Bibliothèque Statique 📦
```cmake
# Compiler STTService en lib séparée AVANT VoiceService
add_library(AissiaSTT STATIC src/services/STTService.cpp)
# Avec flags de compilation spécifiques
```
**Avantage**: Contrôle fin sur ordre de compilation
**Inconvénient**: Peut ne pas suffire (macros sont au preprocessor)
---
## Recommandation
**Option A** (Fixer GroveEngine) est la meilleure solution long terme:
1. Identifier les macros problématiques dans `JsonDataNode.h`
2. Les remplacer par:
```cpp
// Au lieu de #define logger ...
static constexpr int LOGGER_SOMETHING = ...;
```
3. Mettre à jour GroveEngine ou forker
**Court terme**: Désactiver STTService dans CMakeLists et continuer Phase 7.2 (PocketSphinx) en parallèle.
---
## Impact
### ✅ Ce qui fonctionne
- Architecture STT complète (interfaces, factory, engines)
- Configuration JSON
- Integration conceptuelle dans VoiceService
- Tests peuvent être écrits (sans exécution)
### ❌ Ce qui bloque
- Compilation de `VoiceService.cpp`
- Compilation de `STTService.cpp`
- Tests d'intégration
- Utilisation effective du STT
### 🔄 Workaround Temporaire
```cpp
// Dans main.cpp: NE PAS appeler voiceService.configureSTT()
// Le reste de l'application compile et fonctionne
```
---
## Prochaines Étapes
### Court Terme (Déblocage)
1. ✅ Documenter le problème (ce fichier)
2. ⏭️ Commit le code actuel (architecture valide)
3. ⏭️ Investiguer GroveEngine/JsonDataNode.h
4. ⏭️ Tester Option A (fix macros)
### Moyen Terme (Phase 7.2)
Si Option A échoue:
- Implémenter PocketSphinxEngine séparément (compile indépendamment)
- Tests unitaires des engines (sans VoiceService)
- Documentation architecture alternative
### Long Terme (Phase 7 Complète)
- Résoudre conflits macros définitivement
- Intégration complète STT → VoiceService
- Tests end-to-end avec microphone
---
## Logs de Compilation (Exemple)
```
/src/services/VoiceService.cpp:84:34: error:
request for member 'empty' in 'm_speakQueue', which is of non-class type 'int'
84 | while (!m_speakQueue.empty()) m_speakQueue.pop();
| ^~~~~
/src/services/VoiceService.cpp:10:42: error:
no match for 'operator=' (operand types are 'std::shared_ptr<spdlog::logger>' and 'int')
10 | m_logger = spdlog::get("VoiceService");
| ^
/spdlog/sinks/stdout_color_sinks.h:39:17: error:
'logger' was not declared in this scope; did you mean 'spdlog::logger'?
```
**Diagnostic**: Les macros remplacent `logger` et `queue` par autre chose (probablement `int` ou vide), causant des erreurs de type.
---
## Références
- **Plan original**: `plans/PHASE7_STT_IMPLEMENTATION.md`
- **Issue similaire**: https://github.com/gabime/spdlog/issues/1897 (macro conflicts)
- **Vosk API**: https://alphacephei.com/vosk/
- **GroveEngine**: `external/GroveEngine/include/grove/JsonDataNode.h`
---
**Auteur**: Claude Code
**Dernière mise à jour**: 2025-11-29
**Status**: 🔴 Bloqué - Attend résolution conflits macros

View File

@ -1,947 +0,0 @@
# Phase 7 - Implémentation STT Modulaire
**Date de création** : 2025-11-29
**Objectif** : Architecture STT complète avec support multi-engines (Vosk, PocketSphinx, Whisper)
**Nom de l'assistant** : Celuna (anciennement AISSIA)
---
## Vue d'Ensemble
### Objectifs
1. **Architecture modulaire** : Interface `ISTTEngine` avec 4 implémentations
2. **Service STT** : Layer `ISTTService` pour abstraction business logic
3. **Dual Mode** : Passive (keyword spotting) + Active (transcription complète)
4. **Coût optimisé** : Local par défaut, Whisper API en fallback optionnel
---
## Architecture Cible
```
┌─────────────────────────────────────────────────────────┐
│ VoiceService │
│ - Gère TTS (EspeakTTSEngine) │
│ - Gère STT via ISTTService │
│ - Pub/sub IIO (voice:speak, voice:listen, etc.) │
└─────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────┐
│ ISTTService │
│ - Interface service STT │
│ - Gère mode passive/active │
│ - Switch engines selon config │
│ - Fallback automatique │
└─────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────┐
│ STTEngineFactory │
│ - create(type, config) → unique_ptr<ISTTEngine>
└─────────────────────────────────────────────────────────┘
┌────────────────┼────────────────┬──────────────┐
▼ ▼ ▼ ▼
┌──────────┐ ┌──────────────┐ ┌─────────────┐ ┌──────────────┐
│ Vosk │ │ PocketSphinx │ │ WhisperCpp │ │ WhisperAPI │
│ Engine │ │ Engine │ │ Engine │ │ Engine │
└──────────┘ └──────────────┘ └─────────────┘ └──────────────┘
Local Local (keywords) Local (précis) Remote (payant)
50MB model Léger ~10MB 75-142MB API OpenAI
```
---
## Phase 7.1 - Service Layer (ISTTService)
### Objectif
Créer une couche service qui abstrait la complexité des engines STT et gère :
- Mode passive/active
- Switching d'engines
- Fallback automatique
- Gestion erreurs
### Fichiers à créer
#### 1. `src/services/ISTTService.hpp`
**Interface du service STT**
```cpp
#pragma once
#include <string>
#include <vector>
#include <functional>
#include <memory>
namespace aissia {
enum class STTMode {
PASSIVE, // Keyword spotting (économe)
ACTIVE // Full transcription
};
enum class STTEngineType {
VOSK,
POCKETSPHINX,
WHISPER_CPP,
WHISPER_API,
AUTO // Factory choisit
};
/**
* @brief Callback pour résultats transcription
*/
using TranscriptionCallback = std::function<void(const std::string& text, STTMode mode)>;
/**
* @brief Callback pour détection keyword
*/
using KeywordCallback = std::function<void(const std::string& keyword)>;
/**
* @brief Interface service STT
*/
class ISTTService {
public:
virtual ~ISTTService() = default;
/**
* @brief Démarre le service STT
*/
virtual bool start() = 0;
/**
* @brief Arrête le service STT
*/
virtual void stop() = 0;
/**
* @brief Change le mode STT
*/
virtual void setMode(STTMode mode) = 0;
/**
* @brief Obtient le mode actuel
*/
virtual STTMode getMode() const = 0;
/**
* @brief Transcrit un fichier audio
*/
virtual std::string transcribeFile(const std::string& filePath) = 0;
/**
* @brief Transcrit des données audio PCM
*/
virtual std::string transcribe(const std::vector<float>& audioData) = 0;
/**
* @brief Active l'écoute en streaming (temps réel)
*/
virtual void startListening(TranscriptionCallback onTranscription,
KeywordCallback onKeyword) = 0;
/**
* @brief Arrête l'écoute streaming
*/
virtual void stopListening() = 0;
/**
* @brief Configure la langue
*/
virtual void setLanguage(const std::string& language) = 0;
/**
* @brief Vérifie si le service est disponible
*/
virtual bool isAvailable() const = 0;
/**
* @brief Obtient le nom de l'engine actuel
*/
virtual std::string getCurrentEngine() const = 0;
};
} // namespace aissia
```
**Estimation** : 50 lignes
---
#### 2. `src/services/STTService.hpp` + `.cpp`
**Implémentation du service STT**
**Features** :
- Gère 2 engines : 1 pour passive (PocketSphinx), 1 pour active (Vosk/Whisper)
- Switch automatique passive → active sur keyword
- Timeout active → passive (30s sans parole)
- Fallback vers Whisper API si engine local fail
- Thread d'écoute microphone (via PortAudio ou ALSA)
**Pseudo-code** :
```cpp
class STTService : public ISTTService {
private:
std::unique_ptr<ISTTEngine> m_passiveEngine; // PocketSphinx
std::unique_ptr<ISTTEngine> m_activeEngine; // Vosk/Whisper
std::unique_ptr<ISTTEngine> m_fallbackEngine; // WhisperAPI
STTMode m_currentMode = STTMode::PASSIVE;
std::thread m_listenThread;
std::atomic<bool> m_listening{false};
TranscriptionCallback m_onTranscription;
KeywordCallback m_onKeyword;
std::chrono::steady_clock::time_point m_lastActivity;
public:
bool start() override {
// Load engines from config
m_passiveEngine = STTEngineFactory::create("pocketsphinx", config);
m_activeEngine = STTEngineFactory::create("vosk", config);
m_fallbackEngine = STTEngineFactory::create("whisper-api", config);
return m_passiveEngine && m_activeEngine;
}
void startListening(TranscriptionCallback onTranscription,
KeywordCallback onKeyword) override {
m_onTranscription = onTranscription;
m_onKeyword = onKeyword;
m_listening = true;
m_listenThread = std::thread([this]() {
listenLoop();
});
}
private:
void listenLoop() {
// Ouvrir microphone (PortAudio)
// Boucle infinie :
// - Si PASSIVE : use m_passiveEngine (keywords only)
// - Si keyword détecté → setMode(ACTIVE) + callback
// - Si ACTIVE : use m_activeEngine (full transcription)
// - Transcrit en temps réel
// - Si timeout 30s → setMode(PASSIVE)
}
};
```
**Estimation** : 300 lignes (service + thread microphone)
---
## Phase 7.2 - Engines STT
### Fichiers à modifier/créer
#### 1. `src/shared/audio/ISTTEngine.hpp` ✅ Existe
**Modifications** : Aucune (interface déjà bonne)
---
#### 2. `src/shared/audio/WhisperAPIEngine.hpp` ✅ Existe
**Modifications** : Aucune (déjà implémenté, sera utilisé comme fallback)
---
#### 3. `src/shared/audio/VoskSTTEngine.hpp` 🆕 À créer
**Vosk Speech Recognition**
**Dépendances** :
- `vosk` library (C++ bindings)
- Modèle français : `vosk-model-small-fr-0.22` (~50MB)
**Installation** :
```bash
# Linux
sudo apt install libvosk-dev
# Télécharger modèle FR
wget https://alphacephei.com/vosk/models/vosk-model-small-fr-0.22.zip
unzip vosk-model-small-fr-0.22.zip -d models/
```
**Implémentation** :
```cpp
#pragma once
#include "ISTTEngine.hpp"
#include <vosk_api.h>
#include <spdlog/spdlog.h>
namespace aissia {
class VoskSTTEngine : public ISTTEngine {
public:
explicit VoskSTTEngine(const std::string& modelPath) {
m_logger = spdlog::get("VoskSTT");
if (!m_logger) {
m_logger = spdlog::stdout_color_mt("VoskSTT");
}
// Load Vosk model
m_model = vosk_model_new(modelPath.c_str());
if (!m_model) {
m_logger->error("Failed to load Vosk model: {}", modelPath);
m_available = false;
return;
}
// Create recognizer (16kHz, mono)
m_recognizer = vosk_recognizer_new(m_model, 16000.0);
m_available = true;
m_logger->info("Vosk STT initialized: {}", modelPath);
}
~VoskSTTEngine() override {
if (m_recognizer) vosk_recognizer_free(m_recognizer);
if (m_model) vosk_model_free(m_model);
}
std::string transcribe(const std::vector<float>& audioData) override {
if (!m_available || audioData.empty()) return "";
// Convert float to int16
std::vector<int16_t> samples(audioData.size());
for (size_t i = 0; i < audioData.size(); ++i) {
samples[i] = static_cast<int16_t>(audioData[i] * 32767.0f);
}
// Feed audio to recognizer
vosk_recognizer_accept_waveform(m_recognizer,
reinterpret_cast<const char*>(samples.data()),
samples.size() * sizeof(int16_t));
// Get final result
const char* result = vosk_recognizer_final_result(m_recognizer);
// Parse JSON result: {"text": "transcription"}
std::string text = parseVoskResult(result);
m_logger->debug("Transcribed: {}", text);
return text;
}
std::string transcribeFile(const std::string& filePath) override {
// Load WAV file, convert to PCM, call transcribe()
// (Implementation omitted for brevity)
}
void setLanguage(const std::string& language) override {
// Vosk model is language-specific, can't change at runtime
}
bool isAvailable() const override { return m_available; }
std::string getEngineName() const override { return "vosk"; }
private:
VoskModel* m_model = nullptr;
VoskRecognizer* m_recognizer = nullptr;
bool m_available = false;
std::shared_ptr<spdlog::logger> m_logger;
std::string parseVoskResult(const char* json) {
// Parse JSON: {"text": "bonjour"} → "bonjour"
// Use nlohmann::json
}
};
} // namespace aissia
```
**Estimation** : 200 lignes
---
#### 4. `src/shared/audio/PocketSphinxEngine.hpp` 🆕 À créer
**PocketSphinx Keyword Spotting**
**Dépendances** :
- `pocketsphinx` library
- Acoustic model (phonétique)
**Installation** :
```bash
sudo apt install pocketsphinx pocketsphinx-en-us
```
**Configuration Keywords** :
```
# keywords.txt
celuna /1e-40/
hey celuna /1e-50/
```
**Implémentation** :
```cpp
#pragma once
#include "ISTTEngine.hpp"
#include <pocketsphinx.h>
#include <spdlog/spdlog.h>
namespace aissia {
class PocketSphinxEngine : public ISTTEngine {
public:
explicit PocketSphinxEngine(const std::vector<std::string>& keywords,
const std::string& modelPath) {
m_logger = spdlog::get("PocketSphinx");
if (!m_logger) {
m_logger = spdlog::stdout_color_mt("PocketSphinx");
}
// Create keyword file
createKeywordFile(keywords);
// Initialize PocketSphinx
ps_config_t* config = ps_config_init(NULL);
ps_config_set_str(config, "hmm", modelPath.c_str());
ps_config_set_str(config, "kws", "/tmp/celuna_keywords.txt");
ps_config_set_float(config, "kws_threshold", 1e-40);
m_decoder = ps_init(config);
m_available = (m_decoder != nullptr);
if (m_available) {
m_logger->info("PocketSphinx initialized for keyword spotting");
}
}
~PocketSphinxEngine() override {
if (m_decoder) ps_free(m_decoder);
}
std::string transcribe(const std::vector<float>& audioData) override {
if (!m_available || audioData.empty()) return "";
// Convert to int16
std::vector<int16_t> samples(audioData.size());
for (size_t i = 0; i < audioData.size(); ++i) {
samples[i] = static_cast<int16_t>(audioData[i] * 32767.0f);
}
// Process audio
ps_start_utt(m_decoder);
ps_process_raw(m_decoder, samples.data(), samples.size(), FALSE, FALSE);
ps_end_utt(m_decoder);
// Get keyword (if detected)
const char* hyp = ps_get_hyp(m_decoder, nullptr);
std::string keyword = (hyp ? hyp : "");
if (!keyword.empty()) {
m_logger->info("Keyword detected: {}", keyword);
}
return keyword;
}
std::string transcribeFile(const std::string& filePath) override {
// Not used for keyword spotting (streaming only)
return "";
}
void setLanguage(const std::string& language) override {}
bool isAvailable() const override { return m_available; }
std::string getEngineName() const override { return "pocketsphinx"; }
private:
ps_decoder_t* m_decoder = nullptr;
bool m_available = false;
std::shared_ptr<spdlog::logger> m_logger;
void createKeywordFile(const std::vector<std::string>& keywords) {
std::ofstream file("/tmp/celuna_keywords.txt");
for (const auto& kw : keywords) {
file << kw << " /1e-40/\n";
}
}
};
} // namespace aissia
```
**Estimation** : 180 lignes
---
#### 5. `src/shared/audio/WhisperCppEngine.hpp` 🆕 À créer (OPTIONNEL)
**whisper.cpp - Local Whisper**
**Dépendances** :
- `whisper.cpp` (ggerganov)
- Modèle : `ggml-tiny.bin` (75MB) ou `ggml-base.bin` (142MB)
**Installation** :
```bash
git clone https://github.com/ggerganov/whisper.cpp external/whisper.cpp
cd external/whisper.cpp
make
./models/download-ggml-model.sh tiny
```
**Implémentation** : Similar à Vosk mais avec API whisper.cpp
**Estimation** : 250 lignes
**⚠️ Note** : Optionnel, à implémenter seulement si besoin haute précision locale
---
#### 6. `src/shared/audio/STTEngineFactory.cpp` 📝 Modifier
**Factory pattern pour créer engines**
```cpp
#include "STTEngineFactory.hpp"
#include "VoskSTTEngine.hpp"
#include "PocketSphinxEngine.hpp"
#include "WhisperCppEngine.hpp"
#include "WhisperAPIEngine.hpp"
namespace aissia {
std::unique_ptr<ISTTEngine> STTEngineFactory::create(
const std::string& type,
const nlohmann::json& config) {
if (type == "vosk" || type == "auto") {
std::string modelPath = config.value("model_path", "./models/vosk-model-small-fr-0.22");
auto engine = std::make_unique<VoskSTTEngine>(modelPath);
if (engine->isAvailable()) return engine;
}
if (type == "pocketsphinx") {
std::vector<std::string> keywords = config.value("keywords", std::vector<std::string>{"celuna"});
std::string modelPath = config.value("model_path", "/usr/share/pocketsphinx/model/en-us");
auto engine = std::make_unique<PocketSphinxEngine>(keywords, modelPath);
if (engine->isAvailable()) return engine;
}
if (type == "whisper-cpp") {
std::string modelPath = config.value("model_path", "./models/ggml-tiny.bin");
auto engine = std::make_unique<WhisperCppEngine>(modelPath);
if (engine->isAvailable()) return engine;
}
if (type == "whisper-api") {
std::string apiKey = std::getenv(config.value("api_key_env", "OPENAI_API_KEY").c_str());
if (!apiKey.empty()) {
return std::make_unique<WhisperAPIEngine>(apiKey);
}
}
// Fallback: stub engine (no-op)
return std::make_unique<StubSTTEngine>();
}
} // namespace aissia
```
**Estimation** : 80 lignes
---
## Phase 7.3 - Intégration VoiceService
### Fichier à modifier
#### `src/services/VoiceService.cpp`
**Modifications** :
1. **Remplacer implémentation directe par ISTTService**
**Avant** :
```cpp
// VoiceService gère directement WhisperAPIEngine
std::unique_ptr<WhisperAPIEngine> m_sttEngine;
```
**Après** :
```cpp
// VoiceService délègue à ISTTService
std::unique_ptr<ISTTService> m_sttService;
```
2. **Initialisation** :
```cpp
void VoiceService::initialize(const nlohmann::json& config) {
// TTS (unchanged)
m_ttsEngine = TTSEngineFactory::create();
// STT (new)
m_sttService = std::make_unique<STTService>(config["stt"]);
m_sttService->start();
// Setup callbacks
m_sttService->startListening(
[this](const std::string& text, STTMode mode) {
handleTranscription(text, mode);
},
[this](const std::string& keyword) {
handleKeyword(keyword);
}
);
}
```
3. **Handlers** :
```cpp
void VoiceService::handleKeyword(const std::string& keyword) {
m_logger->info("Keyword detected: {}", keyword);
// Publish keyword detection
nlohmann::json event = {
{"type", "keyword_detected"},
{"keyword", keyword},
{"timestamp", std::time(nullptr)}
};
m_io->publish("voice:keyword_detected", event);
// Auto-switch to active mode
m_sttService->setMode(STTMode::ACTIVE);
}
void VoiceService::handleTranscription(const std::string& text, STTMode mode) {
m_logger->info("Transcription ({}): {}",
mode == STTMode::PASSIVE ? "passive" : "active", text);
// Publish transcription
nlohmann::json event = {
{"type", "transcription"},
{"text", text},
{"mode", mode == STTMode::PASSIVE ? "passive" : "active"},
{"timestamp", std::time(nullptr)}
};
m_io->publish("voice:transcription", event);
}
```
**Estimation modifications** : +150 lignes
---
## Phase 7.4 - Configuration
### Fichier à modifier
#### `config/voice.json`
**Configuration complète** :
```json
{
"tts": {
"enabled": true,
"engine": "auto",
"rate": 0,
"volume": 80,
"voice": "fr-fr"
},
"stt": {
"passive_mode": {
"enabled": true,
"engine": "pocketsphinx",
"keywords": ["celuna", "hey celuna", "ok celuna"],
"threshold": 0.8,
"model_path": "/usr/share/pocketsphinx/model/en-us"
},
"active_mode": {
"enabled": true,
"engine": "vosk",
"model_path": "./models/vosk-model-small-fr-0.22",
"language": "fr",
"timeout_seconds": 30,
"fallback_engine": "whisper-api"
},
"whisper_api": {
"api_key_env": "OPENAI_API_KEY",
"model": "whisper-1"
},
"microphone": {
"device_id": -1,
"sample_rate": 16000,
"channels": 1,
"buffer_size": 1024
}
}
}
```
---
## Phase 7.5 - Tests
### Fichiers à créer
#### `tests/services/STTServiceTests.cpp`
**Tests unitaires** :
- ✅ Création service
- ✅ Start/stop
- ✅ Switch passive/active
- ✅ Keyword detection
- ✅ Transcription
- ✅ Fallback engine
- ✅ Timeout active → passive
**Estimation** : 200 lignes
---
#### `tests/integration/IT_014_VoicePassiveMode.cpp`
**Test d'intégration passive mode** :
```cpp
// Simulate audio avec keyword "celuna"
// Vérifie :
// 1. PocketSphinx détecte keyword
// 2. Event "voice:keyword_detected" publié
// 3. Switch vers ACTIVE mode
// 4. Timeout 30s → retour PASSIVE
```
**Estimation** : 150 lignes
---
#### `tests/integration/IT_015_VoiceActiveTranscription.cpp`
**Test d'intégration active mode** :
```cpp
// Simulate conversation complète :
// 1. User: "celuna" → keyword detected
// 2. User: "quelle heure est-il ?" → transcription via Vosk
// 3. AI responds → TTS
// 4. Timeout → retour passive
```
**Estimation** : 200 lignes
---
## Phase 7.6 - Documentation
### Fichiers à créer/modifier
#### `docs/STT_ARCHITECTURE.md`
**Documentation technique** :
- Architecture STT
- Choix engines
- Configuration
- Troubleshooting
**Estimation** : 400 lignes
---
#### `README.md`
**Mise à jour roadmap** :
```markdown
### Completed ✅
- [x] STT multi-engine (Vosk, PocketSphinx, Whisper)
- [x] Passive/Active mode (keyword "Celuna")
- [x] Local STT (coût zéro)
```
---
## Récapitulatif Estimation
| Tâche | Fichiers | Lignes | Priorité |
|-------|----------|--------|----------|
| **7.1 Service Layer** | `ISTTService.hpp`, `STTService.{h,cpp}` | 350 | P0 |
| **7.2 Vosk Engine** | `VoskSTTEngine.hpp` | 200 | P0 |
| **7.2 PocketSphinx** | `PocketSphinxEngine.hpp` | 180 | P1 |
| **7.2 WhisperCpp** | `WhisperCppEngine.hpp` | 250 | P2 (optionnel) |
| **7.2 Factory** | `STTEngineFactory.cpp` | 80 | P0 |
| **7.3 VoiceService** | `VoiceService.cpp` (modifs) | +150 | P0 |
| **7.4 Config** | `voice.json` | +30 | P0 |
| **7.5 Tests unitaires** | `STTServiceTests.cpp` | 200 | P1 |
| **7.5 Tests intégration** | `IT_014`, `IT_015` | 350 | P1 |
| **7.6 Documentation** | `STT_ARCHITECTURE.md`, README | 450 | P2 |
| **TOTAL** | 14 fichiers | **~2240 lignes** | |
---
## Plan d'Exécution
### Milestone 1 : MVP STT Local (Vosk seul) ⚡
**Objectif** : STT fonctionnel sans keyword detection
**Tâches** :
1. ✅ Créer `ISTTService.hpp`
2. ✅ Créer `STTService` (simple, sans passive mode)
3. ✅ Créer `VoskSTTEngine`
4. ✅ Modifier `STTEngineFactory`
5. ✅ Intégrer dans `VoiceService`
6. ✅ Config `voice.json`
7. ✅ Test manuel transcription
**Durée estimée** : 3-4h
**Lignes** : ~600
---
### Milestone 2 : Passive Mode (Keyword Detection) 🎧
**Objectif** : Détection "Celuna" + switch auto
**Tâches** :
1. ✅ Créer `PocketSphinxEngine`
2. ✅ Étendre `STTService` (dual mode)
3. ✅ Callbacks keyword/transcription
4. ✅ Timeout active → passive
5. ✅ Config passive/active
6. ✅ Tests IT_014, IT_015
**Durée estimée** : 4-5h
**Lignes** : ~700
---
### Milestone 3 : Fallback Whisper API 🔄
**Objectif** : Robustesse avec fallback cloud
**Tâches** :
1. ✅ Intégrer `WhisperAPIEngine` existant
2. ✅ Logique fallback dans `STTService`
3. ✅ Config fallback
4. ✅ Tests fallback
**Durée estimée** : 2h
**Lignes** : ~200
---
### Milestone 4 : Polish & Documentation 📝
**Tâches** :
1. ✅ Documentation complète
2. ✅ Tests unitaires STTService
3. ✅ Troubleshooting guide
4. ✅ Mise à jour README
**Durée estimée** : 3h
**Lignes** : ~700
---
## Dépendances Externes
### À installer
```bash
# Vosk
sudo apt install libvosk-dev
wget https://alphacephei.com/vosk/models/vosk-model-small-fr-0.22.zip
unzip vosk-model-small-fr-0.22.zip -d models/
# PocketSphinx
sudo apt install pocketsphinx pocketsphinx-en-us
# PortAudio (pour microphone)
sudo apt install portaudio19-dev
# Optionnel: whisper.cpp
git clone https://github.com/ggerganov/whisper.cpp external/whisper.cpp
cd external/whisper.cpp && make
```
### CMakeLists.txt
```cmake
# Find Vosk
find_library(VOSK_LIBRARY vosk REQUIRED)
find_path(VOSK_INCLUDE_DIR vosk_api.h REQUIRED)
# Find PocketSphinx
find_library(POCKETSPHINX_LIBRARY pocketsphinx REQUIRED)
find_path(POCKETSPHINX_INCLUDE_DIR pocketsphinx.h REQUIRED)
# Find PortAudio
find_library(PORTAUDIO_LIBRARY portaudio REQUIRED)
find_path(PORTAUDIO_INCLUDE_DIR portaudio.h REQUIRED)
# Link
target_link_libraries(VoiceService
${VOSK_LIBRARY}
${POCKETSPHINX_LIBRARY}
${PORTAUDIO_LIBRARY}
)
```
---
## Risques & Mitigation
| Risque | Impact | Mitigation |
|--------|--------|------------|
| **Vosk model trop lourd** | RAM (50MB) | Utiliser `vosk-model-small` au lieu de `base` |
| **PocketSphinx faux positifs** | UX | Ajuster threshold (1e-40 → 1e-50) |
| **Microphone permissions** | Bloquant | Guide installation PortAudio + permissions |
| **Latence transcription** | UX | Buffer 1-2s audio avant transcription |
| **Whisper API coût** | Budget | Utiliser seulement en fallback (rare) |
---
## Prochaines Étapes
**Après validation de ce plan** :
1. **Installer dépendances** (Vosk, PocketSphinx, PortAudio)
2. **Milestone 1** : Vosk STT basique
3. **Tester** : Transcription fichier audio FR
4. **Milestone 2** : Keyword "Celuna"
5. **Tester** : Conversation complète passive → active
6. **Commit + Push** : Phase 7 complète
---
## Validation Plan
**Questions avant implémentation** :
1. ✅ Architecture service layer approuvée ?
2. ✅ Choix engines (Vosk + PocketSphinx) OK ?
3. ❓ Besoin WhisperCpp ou Vosk suffit ?
4. ✅ Nom "Celuna" confirmé ?
5. ❓ Autres keywords à détecter ("hey celuna", "ok celuna") ?
---
**Auteur** : Claude Code
**Date** : 2025-11-29
**Phase** : 7 - STT Implementation
**Status** : 📋 Plan - En attente validation

View File

@ -1,16 +0,0 @@
$ErrorActionPreference = "Continue"
cd "C:\Users\alexi\Documents\projects\aissia"
Write-Host "=== Running aissia_tests.exe ===" -ForegroundColor Cyan
& ".\build\tests\aissia_tests.exe" 2>&1 | Tee-Object -FilePath "test_output.txt"
$testExitCode = $LASTEXITCODE
Write-Host "`nTest exit code: $testExitCode" -ForegroundColor $(if ($testExitCode -eq 0) { "Green" } else { "Red" })
Write-Host "`n=== Running test_stt_engines.exe ===" -ForegroundColor Cyan
& ".\build\test_stt_engines.exe" 2>&1 | Tee-Object -FilePath "stt_test_output.txt" -Append
$sttExitCode = $LASTEXITCODE
Write-Host "`nSTT Test exit code: $sttExitCode" -ForegroundColor $(if ($sttExitCode -eq 0) { "Green" } else { "Red" })
Write-Host "`n=== Test Summary ===" -ForegroundColor Cyan
Write-Host "aissia_tests: $(if ($testExitCode -eq 0) { 'PASSED' } else { 'FAILED' })"
Write-Host "test_stt_engines: $(if ($sttExitCode -eq 0) { 'PASSED' } else { 'FAILED' })"

View File

@ -8,7 +8,6 @@
#include "services/VoiceService.hpp" #include "services/VoiceService.hpp"
#include "shared/mcp/MCPServer.hpp" #include "shared/mcp/MCPServer.hpp"
#include "shared/tools/FileSystemTools.hpp" #include "shared/tools/FileSystemTools.hpp"
#include "shared/tools/MCPServerTools.hpp"
#include "shared/llm/ToolRegistry.hpp" #include "shared/llm/ToolRegistry.hpp"
#include <spdlog/spdlog.h> #include <spdlog/spdlog.h>
@ -178,32 +177,14 @@ private:
// Run AISSIA as MCP server (stdio mode) // Run AISSIA as MCP server (stdio mode)
int runMCPServer() { int runMCPServer() {
// Log to stderr so stdout stays clean for JSON-RPC // Log to stderr so stdout stays clean for JSON-RPC
// Use stderr_color_sink from stdout_color_sinks.h
auto logger = spdlog::stderr_color_mt("MCPServer"); auto logger = spdlog::stderr_color_mt("MCPServer");
spdlog::set_default_logger(logger); spdlog::set_default_logger(logger);
spdlog::set_level(spdlog::level::info); spdlog::set_level(spdlog::level::info);
spdlog::info("AISSIA MCP Server starting..."); spdlog::info("AISSIA MCP Server starting...");
// === Initialize Services === // Create tool registry with FileSystem tools
// 1. LLMService (PRIORITY: for chat_with_aissia)
auto llmService = std::make_unique<aissia::LLMService>();
if (!llmService->loadConfig("config/llm.json")) {
spdlog::warn("Failed to load LLM config, chat_with_aissia will be unavailable");
}
llmService->initialize(nullptr); // No IIO in MCP mode
llmService->initializeTools(); // Load internal tools + MCP tools
// 2. StorageService (for save_memory/search_memories)
auto storageService = std::make_unique<aissia::StorageService>();
storageService->initialize(nullptr);
// 3. VoiceService (for TTS/STT)
auto voiceService = std::make_unique<aissia::VoiceService>();
// Note: Voice config is optional
voiceService->initialize(nullptr);
// === Create Tool Registry ===
aissia::ToolRegistry registry; aissia::ToolRegistry registry;
// Register get_current_time tool // Register get_current_time tool
@ -233,18 +214,7 @@ int runMCPServer() {
); );
} }
// === Register AISSIA Tools (Phase 8) === spdlog::info("Registered {} tools", registry.size());
aissia::tools::MCPServerTools aissiaTools(
llmService.get(),
storageService.get(),
voiceService.get()
);
for (const auto& toolDef : aissiaTools.getToolDefinitions()) {
registry.registerTool(toolDef);
}
spdlog::info("Registered {} tools total", registry.size());
// Create and run MCP server // Create and run MCP server
aissia::mcp::MCPServer server(registry); aissia::mcp::MCPServer server(registry);
@ -399,23 +369,21 @@ int main(int argc, char* argv[]) {
aissia::VoiceService voiceService; aissia::VoiceService voiceService;
voiceService.initialize(voiceIO.get()); voiceService.initialize(voiceIO.get());
{ {
// Load voice.json directly as nlohmann::json for Phase 7 STT auto voiceConfig = loadConfig(configDir + "voice.json");
std::ifstream voiceFile(configDir + "voice.json"); auto* ttsNode = voiceConfig->getChildReadOnly("tts");
nlohmann::json voiceConfigJson; if (ttsNode) {
voiceFile >> voiceConfigJson; bool enabled = ttsNode->getBool("enabled", true);
int rate = ttsNode->getInt("rate", 0);
// Configure TTS (legacy API) int volume = ttsNode->getInt("volume", 80);
if (voiceConfigJson.contains("tts")) {
auto tts = voiceConfigJson["tts"];
bool enabled = tts.value("enabled", true);
int rate = tts.value("rate", 0);
int volume = tts.value("volume", 80);
voiceService.configureTTS(enabled, rate, volume); voiceService.configureTTS(enabled, rate, volume);
} }
auto* sttNode = voiceConfig->getChildReadOnly("stt");
// Configure STT (Phase 7 new API) if (sttNode) {
if (voiceConfigJson.contains("stt")) { bool enabled = sttNode->getBool("enabled", true);
voiceService.configureSTT(voiceConfigJson["stt"]); std::string language = sttNode->getString("language", "fr");
std::string apiKeyEnv = sttNode->getString("api_key_env", "OPENAI_API_KEY");
const char* apiKey = std::getenv(apiKeyEnv.c_str());
voiceService.configureSTT(enabled, language, apiKey ? apiKey : "");
} }
} }

View File

@ -1,103 +0,0 @@
#pragma once
#include <string>
#include <vector>
#include <functional>
#include <memory>
namespace aissia {
enum class STTMode {
PASSIVE, // Keyword spotting (économe)
ACTIVE // Full transcription
};
enum class STTEngineType {
VOSK,
POCKETSPHINX,
WHISPER_CPP,
WHISPER_API,
AUTO // Factory choisit
};
/**
* @brief Callback pour résultats transcription
*/
using TranscriptionCallback = std::function<void(const std::string& text, STTMode mode)>;
/**
* @brief Callback pour détection keyword
*/
using KeywordCallback = std::function<void(const std::string& keyword)>;
/**
* @brief Interface service STT
*
* Provides high-level STT functionality with:
* - Passive mode (keyword spotting)
* - Active mode (full transcription)
* - Automatic engine switching
* - Fallback support
*/
class ISTTService {
public:
virtual ~ISTTService() = default;
/**
* @brief Démarre le service STT
*/
virtual bool start() = 0;
/**
* @brief Arrête le service STT
*/
virtual void stop() = 0;
/**
* @brief Change le mode STT
*/
virtual void setMode(STTMode mode) = 0;
/**
* @brief Obtient le mode actuel
*/
virtual STTMode getMode() const = 0;
/**
* @brief Transcrit un fichier audio
*/
virtual std::string transcribeFile(const std::string& filePath) = 0;
/**
* @brief Transcrit des données audio PCM
*/
virtual std::string transcribe(const std::vector<float>& audioData) = 0;
/**
* @brief Active l'écoute en streaming (temps réel)
*/
virtual void startListening(TranscriptionCallback onTranscription,
KeywordCallback onKeyword) = 0;
/**
* @brief Arrête l'écoute streaming
*/
virtual void stopListening() = 0;
/**
* @brief Configure la langue
*/
virtual void setLanguage(const std::string& language) = 0;
/**
* @brief Vérifie si le service est disponible
*/
virtual bool isAvailable() const = 0;
/**
* @brief Obtient le nom de l'engine actuel
*/
virtual std::string getCurrentEngine() const = 0;
};
} // namespace aissia

View File

@ -340,36 +340,4 @@ void LLMService::shutdown() {
m_logger->info("LLMService shutdown"); m_logger->info("LLMService shutdown");
} }
LLMService::SyncResponse LLMService::sendMessageSync(
const std::string& message,
const std::string& conversationId,
const std::string& systemPrompt
) {
SyncResponse syncResp;
// Create request (same as async mode)
Request request;
request.query = message;
request.conversationId = conversationId.empty() ? "mcp-session" : conversationId;
request.systemPrompt = systemPrompt.empty() ? m_defaultSystemPrompt : systemPrompt;
request.maxIterations = m_maxIterations;
// Process synchronously (blocking call)
auto response = processRequest(request);
// Convert to SyncResponse
if (!response.isError) {
syncResp.text = response.text;
syncResp.tokens = response.tokens;
syncResp.iterations = response.iterations;
} else {
// On error, return error in text
syncResp.text = "Error: " + response.text;
syncResp.tokens = 0;
syncResp.iterations = 0;
}
return syncResp;
}
} // namespace aissia } // namespace aissia

View File

@ -60,29 +60,6 @@ public:
/// Load MCP server configurations /// Load MCP server configurations
bool loadMCPConfig(const std::string& configPath); bool loadMCPConfig(const std::string& configPath);
/**
* @brief Synchronous response structure for MCP Server mode
*/
struct SyncResponse {
std::string text;
int tokens = 0;
int iterations = 0;
};
/**
* @brief Send message synchronously (blocking, for MCP Server mode)
*
* @param message User message
* @param conversationId Conversation ID (optional)
* @param systemPrompt Custom system prompt (optional)
* @return Sync response with text, tokens, iterations
*/
SyncResponse sendMessageSync(
const std::string& message,
const std::string& conversationId = "",
const std::string& systemPrompt = ""
);
private: private:
struct Request { struct Request {
std::string query; std::string query;

View File

@ -1,189 +0,0 @@
// CRITICAL ORDER: Include system headers first
#include <nlohmann/json.hpp>
#include <cstdlib>
#include <memory>
#include <string>
// Include local headers before spdlog
#include "STTService.hpp"
#include "../shared/audio/ISTTEngine.hpp"
// Include spdlog after local headers
#include <spdlog/spdlog.h>
#include <spdlog/sinks/stdout_color_sinks.h>
namespace aissia {
STTService::STTService(const nlohmann::json& config)
: m_config(config)
{
m_logger = spdlog::get("STTService");
if (!m_logger) {
m_logger = spdlog::stdout_color_mt("STTService");
}
// Extract language from config
if (config.contains("active_mode") && config["active_mode"].contains("language")) {
m_language = config["active_mode"]["language"].get<std::string>();
}
m_logger->info("STTService created");
}
STTService::~STTService() {
stop();
}
bool STTService::start() {
m_logger->info("Starting STT service");
loadEngines();
if (!m_activeEngine || !m_activeEngine->isAvailable()) {
m_logger->error("No active STT engine available");
return false;
}
m_logger->info("STT service started");
return true;
}
void STTService::stop() {
m_logger->info("Stopping STT service");
stopListening();
m_activeEngine.reset();
}
void STTService::setMode(STTMode mode) {
if (m_currentMode == mode) {
return;
}
m_logger->info("Switching STT mode");
m_currentMode = mode;
}
std::string STTService::transcribeFile(const std::string& filePath) {
if (!m_activeEngine || !m_activeEngine->isAvailable()) {
m_logger->warn("No STT engine available for transcription");
return "";
}
m_logger->info("Transcribing file");
try {
std::string result = m_activeEngine->transcribeFile(filePath);
m_logger->info("Transcription complete");
return result;
} catch (const std::exception& e) {
m_logger->error("Transcription failed");
return "";
}
}
std::string STTService::transcribe(const std::vector<float>& audioData) {
if (!m_activeEngine || !m_activeEngine->isAvailable()) {
return "";
}
if (audioData.empty()) {
return "";
}
try {
std::string result = m_activeEngine->transcribe(audioData);
if (!result.empty() && m_listening && m_onTranscription) {
m_onTranscription(result, m_currentMode);
}
return result;
} catch (const std::exception& e) {
m_logger->error("Transcription failed");
return "";
}
}
void STTService::startListening(TranscriptionCallback onTranscription,
KeywordCallback onKeyword) {
m_logger->info("Start listening");
m_onTranscription = onTranscription;
m_onKeyword = onKeyword;
m_listening = true;
m_logger->warn("Streaming microphone capture not yet implemented");
}
void STTService::stopListening() {
if (!m_listening) {
return;
}
m_logger->info("Stop listening");
m_listening = false;
}
void STTService::setLanguage(const std::string& language) {
m_logger->info("Setting language");
m_language = language;
if (m_activeEngine) {
m_activeEngine->setLanguage(language);
}
}
bool STTService::isAvailable() const {
return m_activeEngine && m_activeEngine->isAvailable();
}
std::string STTService::getCurrentEngine() const {
if (m_activeEngine) {
return m_activeEngine->getEngineName();
}
return "none";
}
void STTService::loadEngines() {
m_logger->info("Loading STT engines");
std::string engineType = "auto";
if (m_config.contains("active_mode")) {
const auto& activeMode = m_config["active_mode"];
if (activeMode.contains("engine")) {
engineType = activeMode["engine"];
}
}
std::string modelPath;
if (m_config.contains("active_mode")) {
const auto& activeMode = m_config["active_mode"];
if (activeMode.contains("model_path")) {
modelPath = activeMode["model_path"];
}
}
std::string apiKey;
if (m_config.contains("whisper_api")) {
const auto& whisperApi = m_config["whisper_api"];
std::string apiKeyEnv = "OPENAI_API_KEY";
if (whisperApi.contains("api_key_env")) {
apiKeyEnv = whisperApi["api_key_env"];
}
const char* envVal = std::getenv(apiKeyEnv.c_str());
if (envVal) {
apiKey = envVal;
}
}
m_activeEngine = STTEngineFactory::create(engineType, modelPath, apiKey);
if (m_activeEngine && m_activeEngine->isAvailable()) {
m_activeEngine->setLanguage(m_language);
m_logger->info("STT engine loaded successfully");
} else {
m_logger->warn("No active STT engine available");
}
}
} // namespace aissia

View File

@ -1,63 +0,0 @@
#pragma once
#include "ISTTService.hpp"
#include "../shared/audio/ISTTEngine.hpp"
#include <nlohmann/json.hpp>
#include <spdlog/spdlog.h>
#include <memory>
#include <string>
namespace aissia {
/**
* @brief STT Service implementation
*
* Phase 7.1 - MVP: Simple service with single engine (Vosk)
* TODO Phase 7.2: Add passive mode (PocketSphinx keyword spotting)
*/
class STTService : public ISTTService {
public:
explicit STTService(const nlohmann::json& config);
~STTService() override;
bool start() override;
void stop() override;
void setMode(STTMode mode) override;
STTMode getMode() const override { return m_currentMode; }
std::string transcribeFile(const std::string& filePath) override;
std::string transcribe(const std::vector<float>& audioData) override;
void startListening(TranscriptionCallback onTranscription,
KeywordCallback onKeyword) override;
void stopListening() override;
void setLanguage(const std::string& language) override;
bool isAvailable() const override;
std::string getCurrentEngine() const override;
private:
// Configuration
nlohmann::json m_config;
std::string m_language = "fr";
// Engines (MVP: only active engine)
std::unique_ptr<ISTTEngine> m_activeEngine;
// State
STTMode m_currentMode = STTMode::ACTIVE;
bool m_listening = false;
// Callbacks
TranscriptionCallback m_onTranscription;
KeywordCallback m_onKeyword;
// Logger
std::shared_ptr<spdlog::logger> m_logger;
// Helpers
void loadEngines();
};
} // namespace aissia

View File

@ -1,17 +1,7 @@
// CRITICAL ORDER: Include system headers before local headers to avoid macro conflicts
#include <nlohmann/json.hpp>
#include <cstdlib>
#include <memory>
#include <string>
#include <queue>
#include <fstream>
// Include VoiceService.hpp BEFORE spdlog to avoid logger macro conflicts
#include "VoiceService.hpp" #include "VoiceService.hpp"
#include "STTService.hpp"
// Include spdlog after VoiceService.hpp
#include <spdlog/sinks/stdout_color_sinks.h> #include <spdlog/sinks/stdout_color_sinks.h>
#include <cstdlib>
namespace aissia { namespace aissia {
@ -30,7 +20,7 @@ bool VoiceService::initialize(grove::IIO* io) {
if (m_ttsEngine && m_ttsEngine->isAvailable()) { if (m_ttsEngine && m_ttsEngine->isAvailable()) {
m_ttsEngine->setRate(m_ttsRate); m_ttsEngine->setRate(m_ttsRate);
m_ttsEngine->setVolume(m_ttsVolume); m_ttsEngine->setVolume(m_ttsVolume);
m_logger->info("TTS engine initialized"); m_logger->info("TTS engine: {}", m_ttsEngine->getEngineName());
} else { } else {
m_logger->warn("TTS engine not available"); m_logger->warn("TTS engine not available");
} }
@ -66,7 +56,7 @@ void VoiceService::configureSTT(bool enabled, const std::string& language,
m_sttEngine = STTEngineFactory::create(apiKey); m_sttEngine = STTEngineFactory::create(apiKey);
if (m_sttEngine) { if (m_sttEngine) {
m_sttEngine->setLanguage(language); m_sttEngine->setLanguage(language);
m_logger->info("STT engine configured"); m_logger->info("STT engine: {}", m_sttEngine->getEngineName());
} }
} }
} }
@ -131,9 +121,7 @@ void VoiceService::speak(const std::string& text) {
// Publish speaking started // Publish speaking started
if (m_io) { if (m_io) {
auto event = std::unique_ptr<grove::IDataNode>( auto event = std::make_unique<grove::JsonDataNode>("event");
new grove::JsonDataNode("event")
);
event->setString("text", text.size() > 100 ? text.substr(0, 100) + "..." : text); event->setString("text", text.size() > 100 ? text.substr(0, 100) + "..." : text);
m_io->publish("voice:speaking_started", std::move(event)); m_io->publish("voice:speaking_started", std::move(event));
} }
@ -141,77 +129,7 @@ void VoiceService::speak(const std::string& text) {
m_ttsEngine->speak(text, true); m_ttsEngine->speak(text, true);
m_totalSpoken++; m_totalSpoken++;
m_logger->debug("Speaking"); m_logger->debug("Speaking: {}", text.size() > 50 ? text.substr(0, 50) + "..." : text);
}
// Phase 7: New STT configuration with full config support
void VoiceService::configureSTT(const nlohmann::json& sttConfig) {
m_logger->info("[VoiceService] Configuring STT service (Phase 7)");
// Extract enabled flag
bool enabled = false;
if (sttConfig.contains("active_mode")) {
const auto& activeMode = sttConfig["active_mode"];
enabled = activeMode.value("enabled", true);
}
m_sttEnabled = enabled;
if (!enabled) {
m_logger->info("[VoiceService] STT disabled in config");
return;
}
// Create and start STT service
m_sttService = std::make_unique<STTService>(sttConfig);
if (!m_sttService->start()) {
m_logger->error("[VoiceService] Failed to start STT service");
m_sttService.reset();
return;
}
m_logger->info("[VoiceService] STT service started");
// Setup callbacks for transcription events
// Note: For MVP Milestone 1, we don't start streaming yet
// This will be implemented in Milestone 2 (passive mode)
}
// STT event handlers (Phase 7)
void VoiceService::handleKeyword(const std::string& keyword) {
m_logger->info("[VoiceService] Keyword detected");
// Publish keyword detection event
if (m_io) {
auto event = std::unique_ptr<grove::IDataNode>(
new grove::JsonDataNode("event")
);
event->setString("keyword", keyword);
event->setInt("timestamp", static_cast<int>(std::time(nullptr)));
m_io->publish("voice:keyword_detected", std::move(event));
}
// Auto-switch to active mode (Phase 7.2)
if (m_sttService) {
m_sttService->setMode(STTMode::ACTIVE);
}
}
void VoiceService::handleTranscription(const std::string& text, STTMode mode) {
m_logger->info("[VoiceService] Transcription received");
// Publish transcription event
if (m_io) {
std::string modeStr = (mode == STTMode::PASSIVE ? "passive" : "active");
auto event = std::unique_ptr<grove::IDataNode>(
new grove::JsonDataNode("event")
);
event->setString("text", text);
event->setString("mode", modeStr);
event->setInt("timestamp", static_cast<int>(std::time(nullptr)));
m_io->publish("voice:transcription", std::move(event));
}
} }
void VoiceService::shutdown() { void VoiceService::shutdown() {
@ -219,76 +137,7 @@ void VoiceService::shutdown() {
m_ttsEngine->stop(); m_ttsEngine->stop();
} }
if (m_sttService) { m_logger->info("VoiceService shutdown. Total spoken: {}", m_totalSpoken);
m_sttService->stop();
}
m_logger->info("[VoiceService] Shutdown");
}
bool VoiceService::loadConfig(const std::string& configPath) {
try {
std::ifstream file(configPath);
if (!file.is_open()) {
m_logger->warn("[VoiceService] Config file not found: {}", configPath);
return false;
}
nlohmann::json config;
file >> config;
// Load TTS config
if (config.contains("tts")) {
const auto& ttsConfig = config["tts"];
m_ttsEnabled = ttsConfig.value("enabled", true);
m_ttsRate = ttsConfig.value("rate", 0);
m_ttsVolume = ttsConfig.value("volume", 80);
}
// Load STT config (Phase 7 format)
if (config.contains("stt")) {
configureSTT(config["stt"]);
}
m_logger->info("[VoiceService] Config loaded from {}", configPath);
return true;
} catch (const std::exception& e) {
m_logger->error("[VoiceService] Failed to load config: {}", e.what());
return false;
}
}
std::string VoiceService::transcribeFileSync(
const std::string& filePath,
const std::string& language
) {
m_logger->info("[VoiceService] transcribeFileSync: {}", filePath);
if (!m_sttService) {
throw std::runtime_error("STT service not initialized");
}
// Use STT service to transcribe file synchronously
// Note: This requires STT service to support file transcription
// For MVP, we'll throw not implemented
throw std::runtime_error("transcribeFileSync not yet implemented - STT service needs file transcription support");
}
bool VoiceService::textToSpeechSync(
const std::string& text,
const std::string& outputFile,
const std::string& voice
) {
m_logger->info("[VoiceService] textToSpeechSync: {} -> {}", text.substr(0, 50), outputFile);
if (!m_ttsEngine) {
throw std::runtime_error("TTS engine not initialized");
}
// For MVP, we don't support saving to file yet
// The TTS engine currently only speaks directly
throw std::runtime_error("textToSpeechSync file output not yet implemented - TTS engine needs file output support");
} }
} // namespace aissia } // namespace aissia

View File

@ -1,10 +1,6 @@
#pragma once #pragma once
// Include nlohmann/json BEFORE grove headers to avoid macro conflicts
#include <nlohmann/json.hpp>
#include "IService.hpp" #include "IService.hpp"
#include "ISTTService.hpp"
#include "../shared/audio/ITTSEngine.hpp" #include "../shared/audio/ITTSEngine.hpp"
#include "../shared/audio/ISTTEngine.hpp" #include "../shared/audio/ISTTEngine.hpp"
@ -48,42 +44,10 @@ public:
/// Configure TTS settings /// Configure TTS settings
void configureTTS(bool enabled = true, int rate = 0, int volume = 80); void configureTTS(bool enabled = true, int rate = 0, int volume = 80);
/// Configure STT settings (legacy API) /// Configure STT settings
void configureSTT(bool enabled = true, const std::string& language = "fr", void configureSTT(bool enabled = true, const std::string& language = "fr",
const std::string& apiKey = ""); const std::string& apiKey = "");
/// Configure STT with full config (Phase 7)
void configureSTT(const nlohmann::json& sttConfig);
/// Load configuration from JSON file
bool loadConfig(const std::string& configPath);
/**
* @brief Transcribe audio file synchronously (for MCP Server mode)
*
* @param filePath Path to audio file
* @param language Language code (e.g., "fr", "en")
* @return Transcribed text
*/
std::string transcribeFileSync(
const std::string& filePath,
const std::string& language = "fr"
);
/**
* @brief Convert text to speech synchronously (for MCP Server mode)
*
* @param text Text to synthesize
* @param outputFile Output audio file path
* @param voice Voice identifier (e.g., "fr-fr")
* @return true if successful
*/
bool textToSpeechSync(
const std::string& text,
const std::string& outputFile,
const std::string& voice = "fr-fr"
);
private: private:
// Configuration // Configuration
bool m_ttsEnabled = true; bool m_ttsEnabled = true;
@ -94,8 +58,7 @@ private:
// State // State
std::unique_ptr<ITTSEngine> m_ttsEngine; std::unique_ptr<ITTSEngine> m_ttsEngine;
std::unique_ptr<ISTTEngine> m_sttEngine; // Legacy direct engine (deprecated) std::unique_ptr<ISTTEngine> m_sttEngine;
std::unique_ptr<ISTTService> m_sttService; // Phase 7: New STT service layer
std::queue<std::string> m_speakQueue; std::queue<std::string> m_speakQueue;
int m_totalSpoken = 0; int m_totalSpoken = 0;
@ -108,10 +71,6 @@ private:
void processSpeakQueue(); void processSpeakQueue();
void speak(const std::string& text); void speak(const std::string& text);
void handleSpeakRequest(const grove::IDataNode& data); void handleSpeakRequest(const grove::IDataNode& data);
// STT handlers (Phase 7)
void handleTranscription(const std::string& text, STTMode mode);
void handleKeyword(const std::string& keyword);
}; };
} // namespace aissia } // namespace aissia

View File

@ -8,9 +8,9 @@
namespace aissia { namespace aissia {
/** /**
* @brief Callback for transcription results (low-level engine) * @brief Callback for transcription results
*/ */
using STTEngineCallback = std::function<void(const std::string& text)>; using TranscriptionCallback = std::function<void(const std::string& text)>;
/** /**
* @brief Interface for Speech-to-Text engines * @brief Interface for Speech-to-Text engines
@ -58,13 +58,7 @@ public:
*/ */
class STTEngineFactory { class STTEngineFactory {
public: public:
// Legacy API (for backward compatibility)
static std::unique_ptr<ISTTEngine> create(const std::string& apiKey); static std::unique_ptr<ISTTEngine> create(const std::string& apiKey);
// New API with engine type and config
static std::unique_ptr<ISTTEngine> create(const std::string& type,
const std::string& modelPath,
const std::string& apiKey = "");
}; };
} // namespace aissia } // namespace aissia

View File

@ -1,197 +0,0 @@
#include "PocketSphinxEngine.hpp"
#include <spdlog/spdlog.h>
#include <spdlog/sinks/stdout_color_sinks.h>
#include <fstream>
// Only include PocketSphinx headers if library is available
#ifdef HAVE_POCKETSPHINX
#include <pocketsphinx.h>
#endif
namespace aissia {
PocketSphinxEngine::PocketSphinxEngine(const std::string& modelPath,
const std::vector<std::string>& keywords)
: m_modelPath(modelPath)
, m_keywords(keywords)
{
m_logger = spdlog::get("PocketSphinx");
if (!m_logger) {
m_logger = spdlog::stdout_color_mt("PocketSphinx");
}
m_keywordMode = !keywords.empty();
m_available = initialize();
if (m_available) {
m_logger->info("PocketSphinx STT initialized: model={}, keyword_mode={}",
modelPath, m_keywordMode);
} else {
m_logger->warn("PocketSphinx not available (library not installed or model missing)");
}
}
PocketSphinxEngine::~PocketSphinxEngine() {
cleanup();
}
bool PocketSphinxEngine::initialize() {
#ifdef HAVE_POCKETSPHINX
// Check if model directory exists
std::ifstream modelCheck(m_modelPath + "/mdef");
if (!modelCheck.good()) {
m_logger->error("PocketSphinx model not found at: {}", m_modelPath);
return false;
}
// Create configuration
m_config = cmd_ln_init(nullptr, ps_args(), TRUE,
"-hmm", m_modelPath.c_str(),
"-dict", (m_modelPath + "/cmudict-en-us.dict").c_str(),
"-logfn", "/dev/null", // Suppress verbose logging
nullptr);
if (!m_config) {
m_logger->error("Failed to create PocketSphinx config");
return false;
}
// Create decoder
m_decoder = ps_init(m_config);
if (!m_decoder) {
m_logger->error("Failed to initialize PocketSphinx decoder");
cmd_ln_free_r(m_config);
m_config = nullptr;
return false;
}
// If keyword mode, set up keyword spotting
if (m_keywordMode) {
setKeywords(m_keywords, m_keywordThreshold);
}
return true;
#else
m_logger->warn("PocketSphinx support not compiled (HAVE_POCKETSPHINX not defined)");
return false;
#endif
}
void PocketSphinxEngine::cleanup() {
#ifdef HAVE_POCKETSPHINX
if (m_decoder) {
ps_free(m_decoder);
m_decoder = nullptr;
}
if (m_config) {
cmd_ln_free_r(m_config);
m_config = nullptr;
}
#endif
}
void PocketSphinxEngine::setKeywords(const std::vector<std::string>& keywords, float threshold) {
m_keywords = keywords;
m_keywordThreshold = threshold;
m_keywordMode = !keywords.empty();
#ifdef HAVE_POCKETSPHINX
if (!m_decoder || keywords.empty()) {
return;
}
// Build keyword string (format: "keyword /threshold/\n")
std::string keywordStr;
for (const auto& kw : keywords) {
keywordStr += kw + " /1e-" + std::to_string(int(threshold * 100)) + "/\n";
}
// Set keyword spotting mode
ps_set_kws(m_decoder, "keywords", keywordStr.c_str());
ps_set_search(m_decoder, "keywords");
m_logger->info("PocketSphinx keyword mode enabled: {} keywords, threshold={}",
keywords.size(), threshold);
#endif
}
std::string PocketSphinxEngine::processAudioData(const int16_t* audioData, size_t numSamples) {
#ifdef HAVE_POCKETSPHINX
if (!m_decoder) {
return "";
}
// Start utterance
ps_start_utt(m_decoder);
// Process audio
ps_process_raw(m_decoder, audioData, numSamples, FALSE, FALSE);
// End utterance
ps_end_utt(m_decoder);
// Get hypothesis
const char* hyp = ps_get_hyp(m_decoder, nullptr);
if (hyp) {
std::string result(hyp);
m_logger->debug("PocketSphinx recognized: {}", result);
return result;
}
return "";
#else
return "";
#endif
}
std::string PocketSphinxEngine::transcribe(const std::vector<float>& audioData) {
if (!m_available || audioData.empty()) {
return "";
}
// Convert float samples to int16
std::vector<int16_t> int16Data(audioData.size());
for (size_t i = 0; i < audioData.size(); ++i) {
float sample = audioData[i];
// Clamp to [-1.0, 1.0] and convert to int16
if (sample > 1.0f) sample = 1.0f;
if (sample < -1.0f) sample = -1.0f;
int16Data[i] = static_cast<int16_t>(sample * 32767.0f);
}
return processAudioData(int16Data.data(), int16Data.size());
}
std::string PocketSphinxEngine::transcribeFile(const std::string& filePath) {
if (!m_available) {
return "";
}
m_logger->info("PocketSphinx transcribing file: {}", filePath);
// For file transcription, we'd need to:
// 1. Read the audio file (wav/raw)
// 2. Convert to int16 PCM
// 3. Call processAudioData
//
// For now, return empty (file I/O requires additional dependencies)
m_logger->warn("PocketSphinx file transcription not yet implemented");
return "";
}
void PocketSphinxEngine::setLanguage(const std::string& language) {
m_language = language;
m_logger->info("PocketSphinx language set to: {}", language);
// Note: PocketSphinx requires different acoustic models for different languages
// Would need to reinitialize with appropriate model path
}
bool PocketSphinxEngine::isAvailable() const {
return m_available;
}
std::string PocketSphinxEngine::getEngineName() const {
return "pocketsphinx";
}
} // namespace aissia

View File

@ -1,80 +0,0 @@
#pragma once
#include "ISTTEngine.hpp"
#include <spdlog/spdlog.h>
#include <memory>
#include <vector>
#include <string>
// PocketSphinx forward declarations (to avoid including full headers)
struct ps_decoder_s;
typedef struct ps_decoder_s ps_decoder_t;
struct cmd_ln_s;
typedef struct cmd_ln_s cmd_ln_t;
namespace aissia {
/**
* @brief CMU PocketSphinx Speech-to-Text engine
*
* Lightweight keyword spotting engine ideal for passive listening.
* Very resource-efficient, perfect for detecting wake words.
*
* Features:
* - Very low CPU/memory usage
* - Fast keyword spotting
* - Offline (no internet required)
* - Good for trigger words like "hey celuna"
*
* Limitations:
* - Less accurate than Vosk/Whisper for full transcription
* - Best used for keyword detection in passive mode
*/
class PocketSphinxEngine : public ISTTEngine {
public:
/**
* @brief Construct PocketSphinx engine
* @param modelPath Path to PocketSphinx acoustic model directory
* @param keywords List of keywords to detect (optional, for keyword mode)
*/
explicit PocketSphinxEngine(const std::string& modelPath,
const std::vector<std::string>& keywords = {});
~PocketSphinxEngine() override;
// Disable copy
PocketSphinxEngine(const PocketSphinxEngine&) = delete;
PocketSphinxEngine& operator=(const PocketSphinxEngine&) = delete;
std::string transcribe(const std::vector<float>& audioData) override;
std::string transcribeFile(const std::string& filePath) override;
void setLanguage(const std::string& language) override;
bool isAvailable() const override;
std::string getEngineName() const override;
/**
* @brief Set keywords for detection (passive mode)
* @param keywords List of keywords to detect
* @param threshold Detection threshold (0.0-1.0, default 0.8)
*/
void setKeywords(const std::vector<std::string>& keywords, float threshold = 0.8f);
private:
bool initialize();
void cleanup();
std::string processAudioData(const int16_t* audioData, size_t numSamples);
std::shared_ptr<spdlog::logger> m_logger;
std::string m_modelPath;
std::string m_language = "en";
std::vector<std::string> m_keywords;
float m_keywordThreshold = 0.8f;
bool m_available = false;
bool m_keywordMode = false;
// PocketSphinx decoder (opaque pointer to avoid header dependency)
ps_decoder_t* m_decoder = nullptr;
cmd_ln_t* m_config = nullptr;
};
} // namespace aissia

View File

@ -1,10 +1,6 @@
#include "ISTTEngine.hpp" #include "ISTTEngine.hpp"
#include "WhisperAPIEngine.hpp" #include "WhisperAPIEngine.hpp"
#include "VoskSTTEngine.hpp"
#include "PocketSphinxEngine.hpp"
#include "WhisperCppEngine.hpp"
#include <spdlog/spdlog.h> #include <spdlog/spdlog.h>
#include <filesystem>
namespace aissia { namespace aissia {
@ -24,7 +20,6 @@ public:
std::string getEngineName() const override { return "stub"; } std::string getEngineName() const override { return "stub"; }
}; };
// Legacy factory method (backward compatibility)
std::unique_ptr<ISTTEngine> STTEngineFactory::create(const std::string& apiKey) { std::unique_ptr<ISTTEngine> STTEngineFactory::create(const std::string& apiKey) {
auto logger = spdlog::get("STTFactory"); auto logger = spdlog::get("STTFactory");
if (!logger) { if (!logger) {
@ -43,78 +38,4 @@ std::unique_ptr<ISTTEngine> STTEngineFactory::create(const std::string& apiKey)
return std::make_unique<StubSTTEngine>(); return std::make_unique<StubSTTEngine>();
} }
// New factory method with engine type selection
std::unique_ptr<ISTTEngine> STTEngineFactory::create(
const std::string& type,
const std::string& modelPath,
const std::string& apiKey) {
auto logger = spdlog::get("STTFactory");
if (!logger) {
logger = spdlog::stdout_color_mt("STTFactory");
}
logger->info("Creating STT engine: type={}, model={}", type, modelPath);
// 1. Try PocketSphinx (lightweight keyword spotting)
if (type == "pocketsphinx") {
if (!modelPath.empty() && std::filesystem::exists(modelPath)) {
auto engine = std::make_unique<PocketSphinxEngine>(modelPath);
if (engine->isAvailable()) {
logger->info("Using PocketSphinx STT engine (model: {})", modelPath);
return engine;
} else {
logger->warn("PocketSphinx engine not available (check if libpocketsphinx is installed)");
}
} else {
logger->debug("PocketSphinx model not found at: {}", modelPath);
}
}
// 2. Try Vosk (good local STT for full transcription)
if (type == "vosk" || type == "auto") {
if (!modelPath.empty() && std::filesystem::exists(modelPath)) {
auto engine = std::make_unique<VoskSTTEngine>(modelPath);
if (engine->isAvailable()) {
logger->info("Using Vosk STT engine (model: {})", modelPath);
return engine;
} else {
logger->warn("Vosk engine not available (check if libvosk is installed)");
}
} else {
logger->debug("Vosk model not found at: {}", modelPath);
}
}
// 3. Try Whisper.cpp (high-quality local STT)
if (type == "whisper-cpp" || type == "auto") {
if (!modelPath.empty() && std::filesystem::exists(modelPath)) {
auto engine = std::make_unique<WhisperCppEngine>(modelPath);
if (engine->isAvailable()) {
logger->info("Using Whisper.cpp STT engine (model: {})", modelPath);
return engine;
} else {
logger->warn("Whisper.cpp engine not available (check if whisper.cpp is compiled)");
}
} else {
logger->debug("Whisper.cpp model not found at: {}", modelPath);
}
}
// 4. Fallback to Whisper API if apiKey provided
if (type == "whisper-api" || type == "auto") {
if (!apiKey.empty()) {
auto engine = std::make_unique<WhisperAPIEngine>(apiKey);
if (engine->isAvailable()) {
logger->info("Using Whisper API STT engine (fallback)");
return engine;
}
}
}
// No engine available
logger->warn("No STT engine available, using stub");
return std::make_unique<StubSTTEngine>();
}
} // namespace aissia } // namespace aissia

View File

@ -1,252 +0,0 @@
#include "VoskSTTEngine.hpp"
// Check if Vosk is available at compile time
#ifdef HAS_VOSK
#include <vosk_api.h>
#endif
#include <nlohmann/json.hpp>
#include <spdlog/spdlog.h>
#include <spdlog/sinks/stdout_color_sinks.h>
#include <cstring>
#include <algorithm>
namespace aissia {
VoskSTTEngine::VoskSTTEngine(const std::string& modelPath, float sampleRate)
: m_sampleRate(sampleRate)
{
m_logger = spdlog::get("VoskSTT");
if (!m_logger) {
m_logger = spdlog::stdout_color_mt("VoskSTT");
}
#ifdef HAS_VOSK
m_logger->info("Initializing Vosk STT engine...");
m_logger->info("Model path: {}", modelPath);
m_logger->info("Sample rate: {} Hz", sampleRate);
// Load Vosk model
m_model = vosk_model_new(modelPath.c_str());
if (!m_model) {
m_logger->error("Failed to load Vosk model from: {}", modelPath);
m_logger->error("Make sure the model is downloaded and path is correct");
m_logger->error("Download: https://alphacephei.com/vosk/models");
m_available = false;
return;
}
// Create recognizer
m_recognizer = vosk_recognizer_new(m_model, sampleRate);
if (!m_recognizer) {
m_logger->error("Failed to create Vosk recognizer");
vosk_model_free(m_model);
m_model = nullptr;
m_available = false;
return;
}
m_available = true;
m_logger->info("Vosk STT engine initialized successfully");
#else
m_logger->warn("Vosk support not compiled (HAS_VOSK not defined)");
m_logger->warn("To enable Vosk: install libvosk-dev and rebuild with -DHAS_VOSK");
m_available = false;
#endif
}
VoskSTTEngine::~VoskSTTEngine() {
#ifdef HAS_VOSK
if (m_recognizer) {
vosk_recognizer_free(m_recognizer);
m_recognizer = nullptr;
}
if (m_model) {
vosk_model_free(m_model);
m_model = nullptr;
}
m_logger->debug("Vosk STT engine destroyed");
#endif
}
std::string VoskSTTEngine::transcribe(const std::vector<float>& audioData) {
#ifdef HAS_VOSK
if (!m_available || audioData.empty()) {
return "";
}
// Convert float [-1.0, 1.0] to int16 [-32768, 32767]
std::vector<int16_t> samples(audioData.size());
for (size_t i = 0; i < audioData.size(); ++i) {
float clamped = std::max(-1.0f, std::min(1.0f, audioData[i]));
samples[i] = static_cast<int16_t>(clamped * 32767.0f);
}
// Feed audio to recognizer
int accepted = vosk_recognizer_accept_waveform(
m_recognizer,
reinterpret_cast<const char*>(samples.data()),
samples.size() * sizeof(int16_t)
);
// Get result
const char* result = nullptr;
if (accepted) {
result = vosk_recognizer_result(m_recognizer);
} else {
result = vosk_recognizer_partial_result(m_recognizer);
}
if (!result) {
return "";
}
// Parse JSON result
std::string text = parseVoskResult(result);
if (!text.empty()) {
m_logger->debug("Transcribed {} samples: '{}'", audioData.size(), text);
}
return text;
#else
m_logger->warn("Vosk not available, cannot transcribe");
return "";
#endif
}
std::string VoskSTTEngine::transcribeFile(const std::string& filePath) {
#ifdef HAS_VOSK
if (!m_available) {
m_logger->warn("Vosk engine not available");
return "";
}
m_logger->info("Transcribing file: {}", filePath);
// Read WAV file
std::vector<float> audioData;
if (!readWavFile(filePath, audioData)) {
m_logger->error("Failed to read audio file: {}", filePath);
return "";
}
m_logger->debug("Read {} samples from file", audioData.size());
// Reset recognizer for new utterance
vosk_recognizer_reset(m_recognizer);
// Transcribe
std::string result = transcribe(audioData);
// Get final result
const char* finalResult = vosk_recognizer_final_result(m_recognizer);
if (finalResult) {
std::string finalText = parseVoskResult(finalResult);
if (!finalText.empty()) {
result = finalText;
}
}
m_logger->info("Transcription result: '{}'", result);
return result;
#else
m_logger->warn("Vosk not available, cannot transcribe file");
return "";
#endif
}
void VoskSTTEngine::setLanguage(const std::string& language) {
// Vosk models are language-specific and loaded at construction time
// Cannot change language at runtime
m_logger->debug("Language setting ignored (Vosk model is language-specific)");
m_logger->debug("To change language, load a different model");
}
std::string VoskSTTEngine::parseVoskResult(const std::string& jsonStr) {
try {
auto json = nlohmann::json::parse(jsonStr);
// Vosk returns: {"text": "transcription"} or {"partial": "partial text"}
if (json.contains("text")) {
return json["text"].get<std::string>();
} else if (json.contains("partial")) {
return json["partial"].get<std::string>();
}
return "";
} catch (const std::exception& e) {
m_logger->error("Failed to parse Vosk result: {}", e.what());
m_logger->debug("JSON string: {}", jsonStr);
return "";
}
}
bool VoskSTTEngine::readWavFile(const std::string& filePath, std::vector<float>& outSamples) {
std::ifstream file(filePath, std::ios::binary);
if (!file) {
m_logger->error("Cannot open file: {}", filePath);
return false;
}
// Read WAV header (44 bytes for standard PCM WAV)
char header[44];
file.read(header, 44);
if (!file) {
m_logger->error("Invalid WAV file (header too short)");
return false;
}
// Verify RIFF header
if (std::strncmp(header, "RIFF", 4) != 0) {
m_logger->error("Not a valid WAV file (missing RIFF)");
return false;
}
// Verify WAVE format
if (std::strncmp(header + 8, "WAVE", 4) != 0) {
m_logger->error("Not a valid WAV file (missing WAVE)");
return false;
}
// Extract audio format info
uint16_t audioFormat = *reinterpret_cast<uint16_t*>(header + 20);
uint16_t numChannels = *reinterpret_cast<uint16_t*>(header + 22);
uint32_t sampleRate = *reinterpret_cast<uint32_t*>(header + 24);
uint16_t bitsPerSample = *reinterpret_cast<uint16_t*>(header + 34);
uint32_t dataSize = *reinterpret_cast<uint32_t*>(header + 40);
m_logger->debug("WAV format: {} channels, {} Hz, {} bits",
numChannels, sampleRate, bitsPerSample);
// We expect PCM 16-bit mono
if (audioFormat != 1) {
m_logger->error("Unsupported audio format (expected PCM)");
return false;
}
if (bitsPerSample != 16) {
m_logger->warn("Expected 16-bit audio, got {} bits", bitsPerSample);
}
// Read audio data
std::vector<int16_t> samples(dataSize / sizeof(int16_t));
file.read(reinterpret_cast<char*>(samples.data()), dataSize);
if (!file) {
m_logger->error("Failed to read audio data");
return false;
}
// Convert to float and handle multi-channel (take first channel)
size_t numSamples = samples.size() / numChannels;
outSamples.resize(numSamples);
for (size_t i = 0; i < numSamples; ++i) {
// Take first channel, convert int16 to float [-1.0, 1.0]
outSamples[i] = samples[i * numChannels] / 32768.0f;
}
return true;
}
} // namespace aissia

View File

@ -1,77 +0,0 @@
#pragma once
#include "ISTTEngine.hpp"
#include <nlohmann/json.hpp>
#include <spdlog/spdlog.h>
#include <memory>
#include <string>
#include <vector>
#include <fstream>
// Forward declarations to avoid hard dependency on Vosk
// Actual Vosk headers will be included in the implementation
struct VoskModel;
struct VoskRecognizer;
namespace aissia {
/**
* @brief Vosk Speech Recognition Engine
*
* Lightweight local STT using Vosk models.
* Recommended model: vosk-model-small-fr-0.22 (~50MB)
*
* Installation:
* - sudo apt install libvosk-dev
* - Download model: https://alphacephei.com/vosk/models/vosk-model-small-fr-0.22.zip
*
* Features:
* - Local processing (no API costs)
* - Real-time transcription
* - Supports French, English, and 20+ languages
*/
class VoskSTTEngine : public ISTTEngine {
public:
/**
* @brief Construct Vosk STT engine
* @param modelPath Path to Vosk model directory (e.g., "./models/vosk-model-small-fr-0.22")
* @param sampleRate Audio sample rate (default: 16000 Hz)
*/
explicit VoskSTTEngine(const std::string& modelPath, float sampleRate = 16000.0f);
~VoskSTTEngine() override;
// Disable copy
VoskSTTEngine(const VoskSTTEngine&) = delete;
VoskSTTEngine& operator=(const VoskSTTEngine&) = delete;
std::string transcribe(const std::vector<float>& audioData) override;
std::string transcribeFile(const std::string& filePath) override;
void setLanguage(const std::string& language) override;
bool isAvailable() const override { return m_available; }
std::string getEngineName() const override { return "vosk"; }
private:
VoskModel* m_model = nullptr;
VoskRecognizer* m_recognizer = nullptr;
bool m_available = false;
float m_sampleRate = 16000.0f;
std::shared_ptr<spdlog::logger> m_logger;
/**
* @brief Parse Vosk JSON result
* @param json JSON string from Vosk (e.g., {"text": "bonjour"})
* @return Extracted text
*/
std::string parseVoskResult(const std::string& json);
/**
* @brief Read WAV file and extract PCM data
* @param filePath Path to WAV file
* @param outSamples Output PCM samples (float)
* @return true if successful
*/
bool readWavFile(const std::string& filePath, std::vector<float>& outSamples);
};
} // namespace aissia

View File

@ -1,170 +0,0 @@
#include "WhisperCppEngine.hpp"
#include <spdlog/spdlog.h>
#include <spdlog/sinks/stdout_color_sinks.h>
#include <fstream>
#include <cstring>
// Only include whisper.cpp headers if library is available
#ifdef HAVE_WHISPER_CPP
#include <whisper.h>
#endif
namespace aissia {
WhisperCppEngine::WhisperCppEngine(const std::string& modelPath)
: m_modelPath(modelPath)
{
m_logger = spdlog::get("WhisperCpp");
if (!m_logger) {
m_logger = spdlog::stdout_color_mt("WhisperCpp");
}
m_available = initialize();
if (m_available) {
m_logger->info("Whisper.cpp STT initialized: model={}", modelPath);
} else {
m_logger->warn("Whisper.cpp not available (library not compiled or model missing)");
}
}
WhisperCppEngine::~WhisperCppEngine() {
cleanup();
}
bool WhisperCppEngine::initialize() {
#ifdef HAVE_WHISPER_CPP
// Check if model file exists
std::ifstream modelCheck(m_modelPath, std::ios::binary);
if (!modelCheck.good()) {
m_logger->error("Whisper model not found at: {}", m_modelPath);
return false;
}
modelCheck.close();
// Initialize whisper context
m_ctx = whisper_init_from_file(m_modelPath.c_str());
if (!m_ctx) {
m_logger->error("Failed to initialize Whisper context from model: {}", m_modelPath);
return false;
}
m_logger->info("Whisper.cpp model loaded successfully");
return true;
#else
m_logger->warn("Whisper.cpp support not compiled (HAVE_WHISPER_CPP not defined)");
return false;
#endif
}
void WhisperCppEngine::cleanup() {
#ifdef HAVE_WHISPER_CPP
if (m_ctx) {
whisper_free(m_ctx);
m_ctx = nullptr;
}
#endif
}
void WhisperCppEngine::setParameters(int threads, bool translate) {
m_threads = threads;
m_translate = translate;
m_logger->debug("Whisper.cpp parameters: threads={}, translate={}", threads, translate);
}
std::string WhisperCppEngine::processAudioData(const float* audioData, size_t numSamples) {
#ifdef HAVE_WHISPER_CPP
if (!m_ctx) {
return "";
}
// Setup whisper parameters
whisper_full_params params = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
params.n_threads = m_threads;
params.translate = m_translate;
params.print_progress = false;
params.print_special = false;
params.print_realtime = false;
params.print_timestamps = false;
// Set language if specified (not "auto")
if (m_language != "auto" && m_language.size() >= 2) {
std::string lang2 = m_language.substr(0, 2); // Take first 2 chars (ISO 639-1)
params.language = lang2.c_str();
m_logger->debug("Whisper.cpp using language: {}", lang2);
}
// Run full inference
int result = whisper_full(m_ctx, params, audioData, numSamples);
if (result != 0) {
m_logger->error("Whisper.cpp inference failed with code: {}", result);
return "";
}
// Get transcription
std::string transcription;
int n_segments = whisper_full_n_segments(m_ctx);
for (int i = 0; i < n_segments; ++i) {
const char* text = whisper_full_get_segment_text(m_ctx, i);
if (text) {
if (!transcription.empty()) {
transcription += " ";
}
transcription += text;
}
}
// Trim leading/trailing whitespace
size_t start = transcription.find_first_not_of(" \t\n\r");
size_t end = transcription.find_last_not_of(" \t\n\r");
if (start != std::string::npos && end != std::string::npos) {
transcription = transcription.substr(start, end - start + 1);
}
m_logger->debug("Whisper.cpp transcribed: '{}' ({} segments)", transcription, n_segments);
return transcription;
#else
return "";
#endif
}
std::string WhisperCppEngine::transcribe(const std::vector<float>& audioData) {
if (!m_available || audioData.empty()) {
return "";
}
m_logger->debug("Whisper.cpp transcribing {} samples", audioData.size());
return processAudioData(audioData.data(), audioData.size());
}
std::string WhisperCppEngine::transcribeFile(const std::string& filePath) {
if (!m_available) {
return "";
}
m_logger->info("Whisper.cpp transcribing file: {}", filePath);
// For file transcription, we'd need to:
// 1. Read the audio file (wav format)
// 2. Extract PCM float samples at 16kHz mono
// 3. Call processAudioData
//
// whisper.cpp provides helper functions for this, but requires linking audio libraries
m_logger->warn("Whisper.cpp file transcription not yet implemented (use transcribe() with PCM data)");
return "";
}
void WhisperCppEngine::setLanguage(const std::string& language) {
m_language = language;
m_logger->info("Whisper.cpp language set to: {}", language);
}
bool WhisperCppEngine::isAvailable() const {
return m_available;
}
std::string WhisperCppEngine::getEngineName() const {
return "whisper-cpp";
}
} // namespace aissia

View File

@ -1,79 +0,0 @@
#pragma once
#include "ISTTEngine.hpp"
#include <spdlog/spdlog.h>
#include <memory>
#include <vector>
#include <string>
// whisper.cpp forward declarations (to avoid including full headers)
struct whisper_context;
struct whisper_full_params;
namespace aissia {
/**
* @brief Whisper.cpp Speech-to-Text engine
*
* Local high-quality STT using OpenAI's Whisper model via whisper.cpp.
* Runs entirely offline with excellent accuracy.
*
* Features:
* - High accuracy (OpenAI Whisper quality)
* - Completely offline (no internet required)
* - Multiple model sizes (tiny, base, small, medium, large)
* - Multilingual support
*
* Model sizes:
* - tiny: ~75MB, fastest, less accurate
* - base: ~142MB, balanced
* - small: ~466MB, good quality
* - medium: ~1.5GB, very good
* - large: ~2.9GB, best quality
*
* Recommended: base or small for most use cases
*/
class WhisperCppEngine : public ISTTEngine {
public:
/**
* @brief Construct Whisper.cpp engine
* @param modelPath Path to Whisper GGML model file (e.g., "models/ggml-base.bin")
*/
explicit WhisperCppEngine(const std::string& modelPath);
~WhisperCppEngine() override;
// Disable copy
WhisperCppEngine(const WhisperCppEngine&) = delete;
WhisperCppEngine& operator=(const WhisperCppEngine&) = delete;
std::string transcribe(const std::vector<float>& audioData) override;
std::string transcribeFile(const std::string& filePath) override;
void setLanguage(const std::string& language) override;
bool isAvailable() const override;
std::string getEngineName() const override;
/**
* @brief Set transcription parameters
* @param threads Number of threads to use (default: 4)
* @param translate Translate to English (default: false)
*/
void setParameters(int threads = 4, bool translate = false);
private:
bool initialize();
void cleanup();
std::string processAudioData(const float* audioData, size_t numSamples);
std::shared_ptr<spdlog::logger> m_logger;
std::string m_modelPath;
std::string m_language = "auto";
bool m_available = false;
int m_threads = 4;
bool m_translate = false;
// whisper.cpp context (opaque pointer to avoid header dependency)
whisper_context* m_ctx = nullptr;
};
} // namespace aissia

View File

@ -7,8 +7,7 @@
* Requires cpp-httplib and OpenSSL for HTTPS support. * Requires cpp-httplib and OpenSSL for HTTPS support.
*/ */
// Only enable OpenSSL support if it was found during CMake configuration #define CPPHTTPLIB_OPENSSL_SUPPORT
// CPPHTTPLIB_OPENSSL_SUPPORT is defined via target_compile_definitions when OpenSSL is available
#include <httplib.h> #include <httplib.h>
#include <nlohmann/json.hpp> #include <nlohmann/json.hpp>
#include <string> #include <string>
@ -73,12 +72,9 @@ public:
std::string url = (m_useSSL ? "https://" : "http://") + m_host; std::string url = (m_useSSL ? "https://" : "http://") + m_host;
httplib::Client client(url); httplib::Client client(url);
// Only enable certificate verification if OpenSSL support is compiled in
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
if (m_useSSL) { if (m_useSSL) {
client.enable_server_certificate_verification(true); client.enable_server_certificate_verification(true);
} }
#endif
client.set_connection_timeout(m_timeoutSeconds); client.set_connection_timeout(m_timeoutSeconds);
client.set_read_timeout(m_timeoutSeconds); client.set_read_timeout(m_timeoutSeconds);
@ -126,12 +122,9 @@ public:
std::string url = (m_useSSL ? "https://" : "http://") + m_host; std::string url = (m_useSSL ? "https://" : "http://") + m_host;
httplib::Client client(url); httplib::Client client(url);
// Only enable certificate verification if OpenSSL support is compiled in
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
if (m_useSSL) { if (m_useSSL) {
client.enable_server_certificate_verification(true); client.enable_server_certificate_verification(true);
} }
#endif
client.set_connection_timeout(m_timeoutSeconds); client.set_connection_timeout(m_timeoutSeconds);
client.set_read_timeout(m_timeoutSeconds); client.set_read_timeout(m_timeoutSeconds);
@ -165,12 +158,9 @@ public:
std::string url = (m_useSSL ? "https://" : "http://") + m_host; std::string url = (m_useSSL ? "https://" : "http://") + m_host;
httplib::Client client(url); httplib::Client client(url);
// Only enable certificate verification if OpenSSL support is compiled in
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
if (m_useSSL) { if (m_useSSL) {
client.enable_server_certificate_verification(true); client.enable_server_certificate_verification(true);
} }
#endif
client.set_connection_timeout(m_timeoutSeconds); client.set_connection_timeout(m_timeoutSeconds);
client.set_read_timeout(m_timeoutSeconds); client.set_read_timeout(m_timeoutSeconds);

View File

@ -1,310 +0,0 @@
#include "MCPServerTools.hpp"
#include "../../services/LLMService.hpp"
#include "../../services/StorageService.hpp"
#include "../../services/VoiceService.hpp"
#include <spdlog/spdlog.h>
namespace aissia::tools {
MCPServerTools::MCPServerTools(
LLMService* llm,
StorageService* storage,
VoiceService* voice
) : m_llmService(llm),
m_storageService(storage),
m_voiceService(voice)
{
}
std::vector<ToolDefinition> MCPServerTools::getToolDefinitions() {
std::vector<ToolDefinition> tools;
// Tool 1: chat_with_aissia (PRIORITÉ)
if (m_llmService) {
tools.push_back({
"chat_with_aissia",
"Dialogue with AISSIA assistant (Claude Sonnet 4). Send a message and get an intelligent response with access to AISSIA's knowledge and capabilities.",
{
{"type", "object"},
{"properties", {
{"message", {
{"type", "string"},
{"description", "Message to send to AISSIA"}
}},
{"conversation_id", {
{"type", "string"},
{"description", "Conversation ID for continuity (optional)"}
}},
{"system_prompt", {
{"type", "string"},
{"description", "Custom system prompt (optional)"}
}}
}},
{"required", json::array({"message"})}
},
[this](const json& input) { return handleChatWithAissia(input); }
});
}
// Tool 2: transcribe_audio
if (m_voiceService) {
tools.push_back({
"transcribe_audio",
"Transcribe audio file to text using Speech-to-Text (Whisper.cpp, OpenAI Whisper API, or Google Speech). Supports WAV, MP3, and other common audio formats.",
{
{"type", "object"},
{"properties", {
{"file_path", {
{"type", "string"},
{"description", "Path to audio file"}
}},
{"language", {
{"type", "string"},
{"description", "Language code (e.g., 'fr', 'en'). Default: 'fr'"}
}}
}},
{"required", json::array({"file_path"})}
},
[this](const json& input) { return handleTranscribeAudio(input); }
});
// Tool 3: text_to_speech
tools.push_back({
"text_to_speech",
"Convert text to speech audio file using Text-to-Speech synthesis. Generates audio in WAV format.",
{
{"type", "object"},
{"properties", {
{"text", {
{"type", "string"},
{"description", "Text to synthesize"}
}},
{"output_file", {
{"type", "string"},
{"description", "Output audio file path (WAV)"}
}},
{"voice", {
{"type", "string"},
{"description", "Voice identifier (e.g., 'fr-fr', 'en-us'). Default: 'fr-fr'"}
}}
}},
{"required", json::array({"text", "output_file"})}
},
[this](const json& input) { return handleTextToSpeech(input); }
});
}
// Tool 4: save_memory
if (m_storageService) {
tools.push_back({
"save_memory",
"Save a note or memory to AISSIA's persistent storage. Memories can be tagged and searched later.",
{
{"type", "object"},
{"properties", {
{"title", {
{"type", "string"},
{"description", "Memory title"}
}},
{"content", {
{"type", "string"},
{"description", "Memory content"}
}},
{"tags", {
{"type", "array"},
{"items", {{"type", "string"}}},
{"description", "Tags for categorization (optional)"}
}}
}},
{"required", json::array({"title", "content"})}
},
[this](const json& input) { return handleSaveMemory(input); }
});
// Tool 5: search_memories
tools.push_back({
"search_memories",
"Search through saved memories and notes in AISSIA's storage. Returns matching memories with relevance scores.",
{
{"type", "object"},
{"properties", {
{"query", {
{"type", "string"},
{"description", "Search query"}
}},
{"limit", {
{"type", "integer"},
{"description", "Maximum results to return. Default: 10"}
}}
}},
{"required", json::array({"query"})}
},
[this](const json& input) { return handleSearchMemories(input); }
});
}
return tools;
}
json MCPServerTools::execute(const std::string& toolName, const json& input) {
if (toolName == "chat_with_aissia") {
return handleChatWithAissia(input);
} else if (toolName == "transcribe_audio") {
return handleTranscribeAudio(input);
} else if (toolName == "text_to_speech") {
return handleTextToSpeech(input);
} else if (toolName == "save_memory") {
return handleSaveMemory(input);
} else if (toolName == "search_memories") {
return handleSearchMemories(input);
}
return {
{"error", "Unknown tool: " + toolName}
};
}
// ============================================================================
// Tool Handlers
// ============================================================================
json MCPServerTools::handleChatWithAissia(const json& input) {
if (!m_llmService) {
return {{"error", "LLMService not available"}};
}
try {
std::string message = input["message"];
std::string conversationId = input.value("conversation_id", "");
std::string systemPrompt = input.value("system_prompt", "");
spdlog::info("[chat_with_aissia] Message: {}", message.substr(0, 100));
// Call synchronous LLM method
auto response = m_llmService->sendMessageSync(message, conversationId, systemPrompt);
return {
{"response", response.text},
{"conversation_id", conversationId},
{"tokens", response.tokens},
{"iterations", response.iterations}
};
} catch (const std::exception& e) {
spdlog::error("[chat_with_aissia] Error: {}", e.what());
return {{"error", e.what()}};
}
}
json MCPServerTools::handleTranscribeAudio(const json& input) {
if (!m_voiceService) {
return {{"error", "VoiceService not available"}};
}
try {
std::string filePath = input["file_path"];
std::string language = input.value("language", "fr");
spdlog::info("[transcribe_audio] File: {}, Language: {}", filePath, language);
// Call synchronous STT method
std::string text = m_voiceService->transcribeFileSync(filePath, language);
return {
{"text", text},
{"file", filePath},
{"language", language}
};
} catch (const std::exception& e) {
spdlog::error("[transcribe_audio] Error: {}", e.what());
return {{"error", e.what()}};
}
}
json MCPServerTools::handleTextToSpeech(const json& input) {
if (!m_voiceService) {
return {{"error", "VoiceService not available"}};
}
try {
std::string text = input["text"];
std::string outputFile = input["output_file"];
std::string voice = input.value("voice", "fr-fr");
spdlog::info("[text_to_speech] Text: {}, Output: {}", text.substr(0, 50), outputFile);
// Call synchronous TTS method
bool success = m_voiceService->textToSpeechSync(text, outputFile, voice);
if (success) {
return {
{"success", true},
{"file", outputFile},
{"voice", voice}
};
} else {
return {{"error", "TTS generation failed"}};
}
} catch (const std::exception& e) {
spdlog::error("[text_to_speech] Error: {}", e.what());
return {{"error", e.what()}};
}
}
json MCPServerTools::handleSaveMemory(const json& input) {
if (!m_storageService) {
return {{"error", "StorageService not available"}};
}
try {
std::string title = input["title"];
std::string content = input["content"];
std::vector<std::string> tags;
if (input.contains("tags") && input["tags"].is_array()) {
for (const auto& tag : input["tags"]) {
tags.push_back(tag.get<std::string>());
}
}
spdlog::info("[save_memory] Title: {}", title);
// TODO: Implement saveMemorySync in StorageService
// For now, return not implemented
return json({
{"error", "save_memory not yet implemented"},
{"note", "StorageService sync methods need to be added"},
{"title", title}
});
} catch (const std::exception& e) {
spdlog::error("[save_memory] Error: {}", e.what());
return {{"error", e.what()}};
}
}
json MCPServerTools::handleSearchMemories(const json& input) {
if (!m_storageService) {
return {{"error", "StorageService not available"}};
}
try {
std::string query = input["query"];
int limit = input.value("limit", 10);
spdlog::info("[search_memories] Query: {}, Limit: {}", query, limit);
// TODO: Implement searchMemoriesSync in StorageService
// For now, return not implemented
return json({
{"error", "search_memories not yet implemented"},
{"note", "StorageService sync methods need to be added"},
{"query", query},
{"limit", limit}
});
} catch (const std::exception& e) {
spdlog::error("[search_memories] Error: {}", e.what());
return {{"error", e.what()}};
}
}
} // namespace aissia::tools

View File

@ -1,76 +0,0 @@
#pragma once
#include "../llm/ToolRegistry.hpp"
#include <nlohmann/json.hpp>
#include <memory>
#include <vector>
// Forward declarations
namespace aissia {
class LLMService;
class StorageService;
class VoiceService;
}
namespace aissia::tools {
using json = nlohmann::json;
/**
* @brief MCP Server Tools - Bridge between MCP Server and AISSIA services
*
* Provides tool definitions for AISSIA modules exposed via MCP Server:
* - chat_with_aissia: Dialogue with AISSIA (Claude Sonnet 4)
* - transcribe_audio: Speech-to-text (Whisper.cpp/OpenAI/Google)
* - text_to_speech: Text-to-speech synthesis
* - save_memory: Save note/memory to storage
* - search_memories: Search stored memories
*
* Note: These tools run in synchronous mode (no IIO pub/sub, no main loop)
*/
class MCPServerTools {
public:
/**
* @brief Construct MCP server tools with service dependencies
*
* @param llm LLMService for chat_with_aissia (can be nullptr)
* @param storage StorageService for save/search memories (can be nullptr)
* @param voice VoiceService for TTS/STT (can be nullptr)
*/
MCPServerTools(
LLMService* llm,
StorageService* storage,
VoiceService* voice
);
/**
* @brief Get all tool definitions for registration
*
* @return Vector of ToolDefinition structs
*/
std::vector<ToolDefinition> getToolDefinitions();
/**
* @brief Execute a tool by name
*
* @param toolName Tool to execute
* @param input Tool arguments (JSON)
* @return Tool result (JSON)
*/
json execute(const std::string& toolName, const json& input);
private:
// Tool handlers
json handleChatWithAissia(const json& input);
json handleTranscribeAudio(const json& input);
json handleTextToSpeech(const json& input);
json handleSaveMemory(const json& input);
json handleSearchMemories(const json& input);
// Service references (nullable)
LLMService* m_llmService;
StorageService* m_storageService;
VoiceService* m_voiceService;
};
} // namespace aissia::tools

View File

@ -1,16 +0,0 @@
{
"environment": {
"platform": "linux",
"testDirectory": "tests/integration"
},
"summary": {
"failed": 0,
"passed": 0,
"skipped": 0,
"successRate": 0.0,
"total": 0,
"totalDurationMs": 0
},
"tests": [],
"timestamp": "2025-11-29T09:01:38Z"
}

View File

@ -1,5 +1,30 @@
#!/bin/bash #!/bin/bash
# Test script for AISSIA interactive mode
cd "/mnt/e/Users/Alexis Trouvé/Documents/Projets/Aissia"
# Load env
set -a set -a
source .env source .env
set +a set +a
echo "Quelle heure est-il ?" | timeout 30 ./build/aissia --interactive
echo "🧪 Testing AISSIA Interactive Mode"
echo "===================================="
echo ""
echo "Sending test queries to AISSIA..."
echo ""
# Test 1: Simple conversation
echo "Test 1: Simple greeting"
echo "Bonjour AISSIA, comment vas-tu ?" | timeout 30 ./build/aissia -i 2>&1 | grep -A 10 "AISSIA:"
echo ""
echo "Test 2: Task query"
echo "Quelle est ma tâche actuelle ?" | timeout 30 ./build/aissia -i 2>&1 | grep -A 10 "AISSIA:"
echo ""
echo "Test 3: Time query"
echo "Quelle heure est-il ?" | timeout 30 ./build/aissia -i 2>&1 | grep -A 10 "AISSIA:"
echo ""
echo "✅ Tests completed"

View File

@ -1,237 +0,0 @@
/**
* @file test_stt_live.cpp
* @brief Live STT testing tool - Test all 4 engines
*/
#include "src/shared/audio/ISTTEngine.hpp"
#include <spdlog/spdlog.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <cstdlib>
using namespace aissia;
// Helper: Load .env file
void loadEnv(const std::string& path = ".env") {
std::ifstream file(path);
if (!file.is_open()) {
spdlog::warn("No .env file found at: {}", path);
return;
}
std::string line;
while (std::getline(file, line)) {
if (line.empty() || line[0] == '#') continue;
auto pos = line.find('=');
if (pos != std::string::npos) {
std::string key = line.substr(0, pos);
std::string value = line.substr(pos + 1);
// Remove quotes
if (!value.empty() && value.front() == '"' && value.back() == '"') {
value = value.substr(1, value.length() - 2);
}
#ifdef _WIN32
_putenv_s(key.c_str(), value.c_str());
#else
setenv(key.c_str(), value.c_str(), 1);
#endif
}
}
spdlog::info("Loaded environment from {}", path);
}
// Helper: Get API key from env
std::string getEnvVar(const std::string& name) {
const char* val = std::getenv(name.c_str());
return val ? std::string(val) : "";
}
// Helper: Load audio file as WAV (simplified - assumes 16-bit PCM)
std::vector<float> loadWavFile(const std::string& path) {
std::ifstream file(path, std::ios::binary);
if (!file.is_open()) {
spdlog::error("Failed to open audio file: {}", path);
return {};
}
// Skip WAV header (44 bytes)
file.seekg(44);
// Read 16-bit PCM samples
std::vector<int16_t> samples;
int16_t sample;
while (file.read(reinterpret_cast<char*>(&sample), sizeof(sample))) {
samples.push_back(sample);
}
// Convert to float [-1.0, 1.0]
std::vector<float> audioData;
audioData.reserve(samples.size());
for (int16_t s : samples) {
audioData.push_back(static_cast<float>(s) / 32768.0f);
}
spdlog::info("Loaded {} samples from {}", audioData.size(), path);
return audioData;
}
int main(int argc, char* argv[]) {
spdlog::set_level(spdlog::level::info);
spdlog::info("=== AISSIA STT Live Test ===");
// Load environment variables
loadEnv();
// Check command line
if (argc < 2) {
std::cout << "Usage: " << argv[0] << " <audio.wav>\n";
std::cout << "\nAvailable engines:\n";
std::cout << " 1. Whisper.cpp (local, requires models/ggml-base.bin)\n";
std::cout << " 2. Whisper API (requires OPENAI_API_KEY)\n";
std::cout << " 3. Google Speech (requires GOOGLE_API_KEY)\n";
std::cout << " 4. Azure STT (requires AZURE_SPEECH_KEY + AZURE_SPEECH_REGION)\n";
std::cout << " 5. Deepgram (requires DEEPGRAM_API_KEY)\n";
return 1;
}
std::string audioFile = argv[1];
// Load audio
std::vector<float> audioData = loadWavFile(audioFile);
if (audioData.empty()) {
spdlog::error("Failed to load audio data");
return 1;
}
// Test each engine
std::cout << "\n========================================\n";
std::cout << "Testing STT Engines\n";
std::cout << "========================================\n\n";
// 1. Whisper.cpp (local)
{
std::cout << "[1/5] Whisper.cpp (local)\n";
std::cout << "----------------------------\n";
try {
auto engine = STTEngineFactory::create("whisper_cpp", "models/ggml-base.bin");
if (engine && engine->isAvailable()) {
engine->setLanguage("fr");
std::string result = engine->transcribe(audioData);
std::cout << "✅ Result: " << result << "\n\n";
} else {
std::cout << "❌ Not available (model missing?)\n\n";
}
} catch (const std::exception& e) {
std::cout << "❌ Error: " << e.what() << "\n\n";
}
}
// 2. Whisper API
{
std::cout << "[2/5] OpenAI Whisper API\n";
std::cout << "----------------------------\n";
std::string apiKey = getEnvVar("OPENAI_API_KEY");
if (apiKey.empty()) {
std::cout << "❌ OPENAI_API_KEY not set\n\n";
} else {
try {
auto engine = STTEngineFactory::create("whisper_api", "", apiKey);
if (engine && engine->isAvailable()) {
engine->setLanguage("fr");
std::string result = engine->transcribeFile(audioFile);
std::cout << "✅ Result: " << result << "\n\n";
} else {
std::cout << "❌ Not available\n\n";
}
} catch (const std::exception& e) {
std::cout << "❌ Error: " << e.what() << "\n\n";
}
}
}
// 3. Google Speech
{
std::cout << "[3/5] Google Speech-to-Text\n";
std::cout << "----------------------------\n";
std::string apiKey = getEnvVar("GOOGLE_API_KEY");
if (apiKey.empty()) {
std::cout << "❌ GOOGLE_API_KEY not set\n\n";
} else {
try {
auto engine = STTEngineFactory::create("google", "", apiKey);
if (engine && engine->isAvailable()) {
engine->setLanguage("fr");
std::string result = engine->transcribeFile(audioFile);
std::cout << "✅ Result: " << result << "\n\n";
} else {
std::cout << "❌ Not available\n\n";
}
} catch (const std::exception& e) {
std::cout << "❌ Error: " << e.what() << "\n\n";
}
}
}
// 4. Azure Speech
{
std::cout << "[4/5] Azure Speech-to-Text\n";
std::cout << "----------------------------\n";
std::string apiKey = getEnvVar("AZURE_SPEECH_KEY");
std::string region = getEnvVar("AZURE_SPEECH_REGION");
if (apiKey.empty() || region.empty()) {
std::cout << "❌ AZURE_SPEECH_KEY or AZURE_SPEECH_REGION not set\n\n";
} else {
try {
auto engine = STTEngineFactory::create("azure", region, apiKey);
if (engine && engine->isAvailable()) {
engine->setLanguage("fr");
std::string result = engine->transcribeFile(audioFile);
std::cout << "✅ Result: " << result << "\n\n";
} else {
std::cout << "❌ Not available\n\n";
}
} catch (const std::exception& e) {
std::cout << "❌ Error: " << e.what() << "\n\n";
}
}
}
// 5. Deepgram
{
std::cout << "[5/5] Deepgram\n";
std::cout << "----------------------------\n";
std::string apiKey = getEnvVar("DEEPGRAM_API_KEY");
if (apiKey.empty()) {
std::cout << "❌ DEEPGRAM_API_KEY not set\n\n";
} else {
try {
auto engine = STTEngineFactory::create("deepgram", "", apiKey);
if (engine && engine->isAvailable()) {
engine->setLanguage("fr");
std::string result = engine->transcribeFile(audioFile);
std::cout << "✅ Result: " << result << "\n\n";
} else {
std::cout << "❌ Not available\n\n";
}
} catch (const std::exception& e) {
std::cout << "❌ Error: " << e.what() << "\n\n";
}
}
}
std::cout << "========================================\n";
std::cout << "Testing complete!\n";
std::cout << "========================================\n";
return 0;
}

View File

@ -55,10 +55,6 @@ target_link_libraries(aissia_tests PRIVATE
target_include_directories(aissia_tests PRIVATE target_include_directories(aissia_tests PRIVATE
${httplib_SOURCE_DIR} ${httplib_SOURCE_DIR}
) )
# Link Winsock for httplib on Windows
if(WIN32)
target_link_libraries(aissia_tests PRIVATE ws2_32)
endif()
if(OPENSSL_FOUND) if(OPENSSL_FOUND)
target_link_libraries(aissia_tests PRIVATE OpenSSL::SSL OpenSSL::Crypto) target_link_libraries(aissia_tests PRIVATE OpenSSL::SSL OpenSSL::Crypto)
target_compile_definitions(aissia_tests PRIVATE CPPHTTPLIB_OPENSSL_SUPPORT) target_compile_definitions(aissia_tests PRIVATE CPPHTTPLIB_OPENSSL_SUPPORT)

View File

@ -1,8 +1,8 @@
{ {
"servers": { "servers": {
"mock_server": { "mock_server": {
"command": "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe", "command": "python3",
"args": ["-u", "tests/fixtures/mock_mcp_server.py"], "args": ["tests/fixtures/mock_mcp_server.py"],
"enabled": true "enabled": true
}, },
"disabled_server": { "disabled_server": {
@ -11,8 +11,8 @@
"enabled": false "enabled": false
}, },
"echo_server": { "echo_server": {
"command": "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe", "command": "python3",
"args": ["-u", "tests/fixtures/echo_server.py"], "args": ["tests/fixtures/echo_server.py"],
"enabled": true "enabled": true
} }
} }

View File

@ -1,182 +0,0 @@
/**
* @file test_stt_engines.cpp
* @brief Manual test program for all 4 STT engines
*
* Tests each STT engine with the same audio file and compares results.
*
* Usage: ./test_stt_engines <audio_file.mp3>
*/
#include "../../src/shared/audio/ISTTEngine.hpp"
#include "../../src/shared/audio/PocketSphinxEngine.hpp"
#include "../../src/shared/audio/VoskSTTEngine.hpp"
#include "../../src/shared/audio/WhisperCppEngine.hpp"
#include "../../src/shared/audio/WhisperAPIEngine.hpp"
#include <spdlog/spdlog.h>
#include <spdlog/sinks/stdout_color_sinks.h>
#include <iostream>
#include <chrono>
#include <cstdlib>
using namespace aissia;
struct TestResult {
std::string engineName;
bool available;
std::string transcription;
double durationMs;
std::string error;
};
TestResult testEngine(ISTTEngine* engine, const std::string& audioFile) {
TestResult result;
result.engineName = engine->getEngineName();
result.available = engine->isAvailable();
if (!result.available) {
result.error = "Engine not available";
return result;
}
auto start = std::chrono::high_resolution_clock::now();
try {
result.transcription = engine->transcribeFile(audioFile);
auto end = std::chrono::high_resolution_clock::now();
result.durationMs = std::chrono::duration<double, std::milli>(end - start).count();
if (result.transcription.empty()) {
result.error = "Empty transcription (file format not supported or processing failed)";
}
} catch (const std::exception& e) {
result.error = std::string("Exception: ") + e.what();
}
return result;
}
void printResult(const TestResult& result) {
std::cout << "\n";
std::cout << "┌─────────────────────────────────────────────────────────\n";
std::cout << "│ Engine: " << result.engineName << "\n";
std::cout << "├─────────────────────────────────────────────────────────\n";
if (!result.available) {
std::cout << "│ Status: ❌ NOT AVAILABLE\n";
std::cout << "│ Reason: " << result.error << "\n";
} else if (!result.error.empty()) {
std::cout << "│ Status: ⚠️ ERROR\n";
std::cout << "│ Error: " << result.error << "\n";
} else {
std::cout << "│ Status: ✅ SUCCESS\n";
std::cout << "│ Duration: " << result.durationMs << " ms\n";
std::cout << "│ Transcription: \"" << result.transcription << "\"\n";
}
std::cout << "└─────────────────────────────────────────────────────────\n";
}
int main(int argc, char* argv[]) {
// Setup logging
auto logger = spdlog::stdout_color_mt("test");
spdlog::set_level(spdlog::level::info);
// Check arguments
if (argc < 2) {
std::cerr << "Usage: " << argv[0] << " <audio_file>\n";
std::cerr << "Example: " << argv[0] << " test_audio.mp3\n";
return 1;
}
std::string audioFile = argv[1];
std::cout << "\n";
std::cout << "╔═══════════════════════════════════════════════════════════╗\n";
std::cout << "║ STT ENGINES TEST - AISSIA Phase 7 ║\n";
std::cout << "╚═══════════════════════════════════════════════════════════╝\n";
std::cout << "\n";
std::cout << "Audio file: " << audioFile << "\n";
std::cout << "\n";
std::cout << "Testing 4 STT engines...\n";
// Prepare engines
std::vector<std::pair<std::string, std::unique_ptr<ISTTEngine>>> engines;
// 1. PocketSphinx
std::cout << "\n[1/4] Initializing PocketSphinx...\n";
engines.push_back({
"PocketSphinx",
std::make_unique<PocketSphinxEngine>("/usr/share/pocketsphinx/model/en-us")
});
// 2. Vosk
std::cout << "[2/4] Initializing Vosk...\n";
engines.push_back({
"Vosk",
std::make_unique<VoskSTTEngine>("./models/vosk-model-small-fr-0.22")
});
// 3. Whisper.cpp
std::cout << "[3/4] Initializing Whisper.cpp...\n";
engines.push_back({
"Whisper.cpp",
std::make_unique<WhisperCppEngine>("./models/ggml-base.bin")
});
// 4. Whisper API
std::cout << "[4/4] Initializing Whisper API...\n";
const char* apiKey = std::getenv("OPENAI_API_KEY");
engines.push_back({
"Whisper API",
std::make_unique<WhisperAPIEngine>(apiKey ? apiKey : "")
});
// Test each engine
std::vector<TestResult> results;
for (auto& [name, engine] : engines) {
std::cout << "\n▶ Testing " << name << "...\n";
results.push_back(testEngine(engine.get(), audioFile));
}
// Print results
std::cout << "\n\n";
std::cout << "╔═══════════════════════════════════════════════════════════╗\n";
std::cout << "║ RESULTS ║\n";
std::cout << "╚═══════════════════════════════════════════════════════════╝\n";
for (const auto& result : results) {
printResult(result);
}
// Summary
std::cout << "\n\n";
std::cout << "╔═══════════════════════════════════════════════════════════╗\n";
std::cout << "║ SUMMARY ║\n";
std::cout << "╚═══════════════════════════════════════════════════════════╝\n";
std::cout << "\n";
int available = 0;
int successful = 0;
for (const auto& result : results) {
if (result.available) available++;
if (result.available && result.error.empty()) successful++;
}
std::cout << "Total engines tested: " << results.size() << "\n";
std::cout << "Engines available: " << available << "/" << results.size() << "\n";
std::cout << "Successful transcriptions: " << successful << "/" << available << "\n";
std::cout << "\n";
if (successful > 0) {
std::cout << "✅ STT system is working!\n";
return 0;
} else if (available > 0) {
std::cout << "⚠️ Some engines available but all failed (check audio file format)\n";
return 1;
} else {
std::cout << "❌ No STT engines available (install models/libraries)\n";
return 1;
}
}

View File

@ -38,7 +38,7 @@ TEST_CASE("TI_CLIENT_001_LoadConfigValid", "[mcp][client]") {
json config = { json config = {
{"servers", { {"servers", {
{"test_server", { {"test_server", {
{"command", "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe"}, {"command", "python3"},
{"args", json::array({"server.py"})}, {"args", json::array({"server.py"})},
{"enabled", true} {"enabled", true}
}} }}
@ -112,7 +112,7 @@ TEST_CASE("TI_CLIENT_005_ConnectAllSkipsDisabled", "[mcp][client]") {
json config = { json config = {
{"servers", { {"servers", {
{"enabled_server", { {"enabled_server", {
{"command", "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe"}, {"command", "python3"},
{"args", json::array({"tests/fixtures/echo_server.py"})}, {"args", json::array({"tests/fixtures/echo_server.py"})},
{"enabled", true} {"enabled", true}
}}, }},
@ -143,12 +143,12 @@ TEST_CASE("TI_CLIENT_006_ConnectSingleServer", "[mcp][client]") {
json config = { json config = {
{"servers", { {"servers", {
{"server1", { {"server1", {
{"command", "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe"}, {"command", "python3"},
{"args", json::array({"tests/fixtures/echo_server.py"})}, {"args", json::array({"tests/fixtures/echo_server.py"})},
{"enabled", true} {"enabled", true}
}}, }},
{"server2", { {"server2", {
{"command", "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe"}, {"command", "python3"},
{"args", json::array({"tests/fixtures/echo_server.py"})}, {"args", json::array({"tests/fixtures/echo_server.py"})},
{"enabled", true} {"enabled", true}
}} }}
@ -178,7 +178,7 @@ TEST_CASE("TI_CLIENT_007_DisconnectSingleServer", "[mcp][client]") {
json config = { json config = {
{"servers", { {"servers", {
{"server1", { {"server1", {
{"command", "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe"}, {"command", "python3"},
{"args", json::array({"tests/fixtures/echo_server.py"})}, {"args", json::array({"tests/fixtures/echo_server.py"})},
{"enabled", true} {"enabled", true}
}} }}
@ -205,12 +205,12 @@ TEST_CASE("TI_CLIENT_008_DisconnectAllCleansUp", "[mcp][client]") {
json config = { json config = {
{"servers", { {"servers", {
{"server1", { {"server1", {
{"command", "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe"}, {"command", "python3"},
{"args", json::array({"tests/fixtures/echo_server.py"})}, {"args", json::array({"tests/fixtures/echo_server.py"})},
{"enabled", true} {"enabled", true}
}}, }},
{"server2", { {"server2", {
{"command", "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe"}, {"command", "python3"},
{"args", json::array({"tests/fixtures/echo_server.py"})}, {"args", json::array({"tests/fixtures/echo_server.py"})},
{"enabled", true} {"enabled", true}
}} }}
@ -366,7 +366,7 @@ TEST_CASE("TI_CLIENT_015_IsConnectedAccurate", "[mcp][client]") {
json config = { json config = {
{"servers", { {"servers", {
{"test_server", { {"test_server", {
{"command", "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe"}, {"command", "python3"},
{"args", json::array({"tests/fixtures/echo_server.py"})}, {"args", json::array({"tests/fixtures/echo_server.py"})},
{"enabled", true} {"enabled", true}
}} }}

View File

@ -20,7 +20,7 @@ using json = nlohmann::json;
MCPServerConfig makeEchoServerConfig() { MCPServerConfig makeEchoServerConfig() {
MCPServerConfig config; MCPServerConfig config;
config.name = "echo"; config.name = "echo";
config.command = "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe"; config.command = "python3";
config.args = {"tests/fixtures/echo_server.py"}; config.args = {"tests/fixtures/echo_server.py"};
config.enabled = true; config.enabled = true;
return config; return config;
@ -29,7 +29,7 @@ MCPServerConfig makeEchoServerConfig() {
MCPServerConfig makeMockMCPServerConfig() { MCPServerConfig makeMockMCPServerConfig() {
MCPServerConfig config; MCPServerConfig config;
config.name = "mock_mcp"; config.name = "mock_mcp";
config.command = "C:\\Users\\alexi\\AppData\\Local\\Programs\\Python\\Python312\\python.exe"; config.command = "python3";
config.args = {"tests/fixtures/mock_mcp_server.py"}; config.args = {"tests/fixtures/mock_mcp_server.py"};
config.enabled = true; config.enabled = true;
return config; return config;