Module system code base
This commit is contained in:
parent
ad9e3e1374
commit
590f6a93a8
126
ARCHITECTURE_REFACTOR.md
Normal file
126
ARCHITECTURE_REFACTOR.md
Normal file
@ -0,0 +1,126 @@
|
||||
# 🏗️ REFACTORISATION ARCHITECTURE - GÉNÉRATION PAR ÉTAPES
|
||||
|
||||
## 📁 **NOUVELLE STRUCTURE FICHIERS**
|
||||
|
||||
```
|
||||
lib/
|
||||
├── Main.js ← ORCHESTRATEUR PRINCIPAL
|
||||
├── ContentGeneration.js ← ORCHESTRATEUR GÉNÉRATION (4 étapes)
|
||||
├── generation/
|
||||
│ ├── InitialGeneration.js ← ÉTAPE 1: Génération base (Claude)
|
||||
│ ├── TechnicalEnhancement.js ← ÉTAPE 2: Amélioration technique (GPT-4)
|
||||
│ ├── TransitionEnhancement.js ← ÉTAPE 3: Fluidité transitions (Gemini)
|
||||
│ └── StyleEnhancement.js ← ÉTAPE 4: Style personnalité (Mistral)
|
||||
└── [autres fichiers existants...]
|
||||
```
|
||||
|
||||
## 🎯 **PRINCIPE D'ARCHITECTURE**
|
||||
|
||||
### **1 FICHIER = 1 ÉTAPE = 1 RESPONSABILITÉ**
|
||||
- Chaque fichier a **UN SEUL OBJECTIF**
|
||||
- Chaque fichier a **UN LLM PRINCIPAL**
|
||||
- Chaque fichier **TESTABLE INDÉPENDAMMENT**
|
||||
|
||||
### **MAIN ENTRY POINT PAR FICHIER**
|
||||
Chaque fichier expose une fonction principale claire :
|
||||
- `InitialGeneration.js` → `generateInitialContent()`
|
||||
- `TechnicalEnhancement.js` → `enhanceTechnicalTerms()`
|
||||
- `TransitionEnhancement.js` → `enhanceTransitions()`
|
||||
- `StyleEnhancement.js` → `applyPersonalityStyle()`
|
||||
|
||||
## 🔄 **FLUX D'ORCHESTRATION**
|
||||
|
||||
```
|
||||
Main.js:handleFullWorkflow()
|
||||
↓
|
||||
ContentGeneration.js:generateWithSelectiveEnhancement()
|
||||
↓
|
||||
InitialGeneration.js:generateInitialContent() [Claude]
|
||||
↓
|
||||
TechnicalEnhancement.js:enhanceTechnicalTerms() [GPT-4]
|
||||
↓
|
||||
TransitionEnhancement.js:enhanceTransitions() [Gemini]
|
||||
↓
|
||||
StyleEnhancement.js:applyPersonalityStyle() [Mistral]
|
||||
↓
|
||||
RÉSULTAT FINAL
|
||||
```
|
||||
|
||||
## 📋 **INTERFACES STANDARDISÉES**
|
||||
|
||||
### **INPUT/OUTPUT CHAQUE ÉTAPE**
|
||||
```javascript
|
||||
// INPUT standardisé
|
||||
{
|
||||
content: { "|tag1|": "contenu1", "|tag2|": "contenu2" },
|
||||
csvData: { mc0, t0, personality, ... },
|
||||
context: { step, totalSteps, metadata }
|
||||
}
|
||||
|
||||
// OUTPUT standardisé
|
||||
{
|
||||
content: { "|tag1|": "contenu_amélioré1", "|tag2|": "contenu_amélioré2" },
|
||||
stats: { processed: 15, enhanced: 8, duration: 2500 },
|
||||
debug: { llmProvider: "claude", tokens: 1200 }
|
||||
}
|
||||
```
|
||||
|
||||
## ⚡ **AVANTAGES ARCHITECTURE**
|
||||
|
||||
### **DÉVELOPPEMENT**
|
||||
- ✅ Debug par étape indépendante
|
||||
- ✅ Tests unitaires par fichier
|
||||
- ✅ Ajout/suppression d'étapes facile
|
||||
- ✅ Code plus lisible et maintenable
|
||||
|
||||
### **PRODUCTION**
|
||||
- ✅ Bypass d'étapes si problème
|
||||
- ✅ Monitoring précis par étape
|
||||
- ✅ Optimisation performance individuelle
|
||||
- ✅ Rollback par étape possible
|
||||
|
||||
## 🔧 **MIGRATION PROGRESSIVE**
|
||||
|
||||
### **PHASE 1**: Créer nouvelle structure
|
||||
- Créer dossier `generation/` et fichiers
|
||||
- Garder ancien code fonctionnel
|
||||
|
||||
### **PHASE 2**: Migrer étape par étape
|
||||
- InitialGeneration.js d'abord
|
||||
- Puis TechnicalEnhancement.js
|
||||
- Etc.
|
||||
|
||||
### **PHASE 3**: Nettoyer ancien code
|
||||
- Supprimer SelectiveEnhancement.js
|
||||
- Mettre à jour imports
|
||||
|
||||
## 🎨 **EXEMPLE STRUCTURE FICHIER**
|
||||
|
||||
```javascript
|
||||
// generation/InitialGeneration.js
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* ÉTAPE 1: GÉNÉRATION INITIALE
|
||||
* Responsabilité: Créer le contenu de base avec Claude
|
||||
* Input: hierarchy, csvData
|
||||
* Output: contenu généré initial
|
||||
*/
|
||||
async function generateInitialContent(hierarchy, csvData) {
|
||||
return await tracer.run('InitialGeneration.generateInitialContent()', async () => {
|
||||
// Logique génération initiale
|
||||
// Claude uniquement
|
||||
});
|
||||
}
|
||||
|
||||
// Helper functions locales
|
||||
function createBasePrompt() { /* ... */ }
|
||||
function parseInitialResponse() { /* ... */ }
|
||||
|
||||
module.exports = {
|
||||
generateInitialContent, // ← MAIN ENTRY POINT
|
||||
createBasePrompt, // ← Helpers si besoin externe
|
||||
parseInitialResponse
|
||||
};
|
||||
```
|
||||
555
fdsm
Normal file
555
fdsm
Normal file
@ -0,0 +1,555 @@
|
||||
[1mdiff --git a/.gitignore b/.gitignore[m
|
||||
[1mindex cff1b08..7217f01 100644[m
|
||||
[1m--- a/.gitignore[m
|
||||
[1m+++ b/.gitignore[m
|
||||
[36m@@ -53,8 +53,7 @@[m [mtest_*.js[m
|
||||
*_debug.js[m
|
||||
test-*.js[m
|
||||
[m
|
||||
[31m-# HTML généré (logs viewer)[m
|
||||
[31m-logs-viewer.html[m
|
||||
[32m+[m[32m# HTML généré était ici mais maintenant on le garde dans tools/[m
|
||||
[m
|
||||
# Unit test reports[m
|
||||
TEST*.xml[m
|
||||
[1mdiff --git a/code.js b/code.js[m
|
||||
[1mindex a1dcd72..a2bdb22 100644[m
|
||||
[1m--- a/code.js[m
|
||||
[1m+++ b/code.js[m
|
||||
[36m@@ -1,6 +1,6 @@[m
|
||||
/*[m
|
||||
code.js — bundle concaténé[m
|
||||
[31m- Généré: 2025-09-03T04:21:57.159Z[m
|
||||
[32m+[m[32m Généré: 2025-09-04T01:10:08.540Z[m
|
||||
Source: lib[m
|
||||
Fichiers: 16[m
|
||||
Ordre: topo[m
|
||||
[36m@@ -57,12 +57,13 @@[m [mconst fileDest = pino.destination({[m
|
||||
});[m
|
||||
tee.pipe(fileDest);[m
|
||||
[m
|
||||
[31m-// Custom levels for Pino to include TRACE and PROMPT[m
|
||||
[32m+[m[32m// Custom levels for Pino to include TRACE, PROMPT, and LLM[m
|
||||
const customLevels = {[m
|
||||
trace: 5, // Below debug (10)[m
|
||||
debug: 10,[m
|
||||
info: 20,[m
|
||||
prompt: 25, // New level for prompts (between info and warn)[m
|
||||
[32m+[m[32m llm: 26, // New level for LLM interactions (between prompt and warn)[m
|
||||
warn: 30,[m
|
||||
error: 40,[m
|
||||
fatal: 50[m
|
||||
[36m@@ -178,6 +179,9 @@[m [masync function logSh(message, level = 'INFO') {[m
|
||||
case 'prompt':[m
|
||||
logger.prompt(traceData, message);[m
|
||||
break;[m
|
||||
[32m+[m[32m case 'llm':[m
|
||||
[32m+[m[32m logger.llm(traceData, message);[m
|
||||
[32m+[m[32m break;[m
|
||||
default:[m
|
||||
logger.info(traceData, message);[m
|
||||
}[m
|
||||
[36m@@ -1282,7 +1286,10 @@[m [masync function callLLM(llmProvider, prompt, options = {}, personality = null) {[m
|
||||
// 📢 AFFICHAGE PROMPT COMPLET POUR DEBUG AVEC INFO IA[m
|
||||
logSh(`\n🔍 ===== PROMPT ENVOYÉ À ${llmProvider.toUpperCase()} (${config.model}) | PERSONNALITÉ: ${personality?.nom || 'AUCUNE'} =====`, 'PROMPT');[m
|
||||
logSh(prompt, 'PROMPT');[m
|
||||
[31m- logSh(`===== FIN PROMPT ${llmProvider.toUpperCase()} (${personality?.nom || 'AUCUNE'}) =====\n`, 'PROMPT');[m
|
||||
[32m+[m[41m [m
|
||||
[32m+[m[32m // 📤 LOG LLM REQUEST COMPLET[m
|
||||
[32m+[m[32m logSh(`📤 LLM REQUEST [${llmProvider.toUpperCase()}] (${config.model}) | Personnalité: ${personality?.nom || 'AUCUNE'}`, 'LLM');[m
|
||||
[32m+[m[32m logSh(prompt, 'LLM');[m
|
||||
[m
|
||||
// Préparer la requête selon le provider[m
|
||||
const requestData = buildRequestData(llmProvider, prompt, options, personality);[m
|
||||
[36m@@ -1293,8 +1300,12 @@[m [masync function callLLM(llmProvider, prompt, options = {}, personality = null) {[m
|
||||
// Parser la réponse selon le format du provider[m
|
||||
const content = parseResponse(llmProvider, response);[m
|
||||
[m
|
||||
[32m+[m[32m // 📥 LOG LLM RESPONSE COMPLET[m
|
||||
[32m+[m[32m logSh(`📥 LLM RESPONSE [${llmProvider.toUpperCase()}] (${config.model}) | Durée: ${Date.now() - startTime}ms`, 'LLM');[m
|
||||
[32m+[m[32m logSh(content, 'LLM');[m
|
||||
[32m+[m[41m [m
|
||||
const duration = Date.now() - startTime;[m
|
||||
[31m- logSh(`✅ ${llmProvider.toUpperCase()} (${personality?.nom || 'sans personnalité'}) réponse en ${duration}ms: "${content.substring(0, 150)}${content.length > 150 ? '...' : ''}"`, 'INFO');[m
|
||||
[32m+[m[32m logSh(`✅ ${llmProvider.toUpperCase()} (${personality?.nom || 'sans personnalité'}) réponse en ${duration}ms`, 'INFO');[m
|
||||
[m
|
||||
// Enregistrer les stats d'usage[m
|
||||
await recordUsageStats(llmProvider, prompt.length, content.length, duration);[m
|
||||
[36m@@ -1727,6 +1738,8 @@[m [mmodule.exports = {[m
|
||||
LLM_CONFIG[m
|
||||
};[m
|
||||
[m
|
||||
[32m+[m
|
||||
[32m+[m
|
||||
/*[m
|
||||
┌────────────────────────────────────────────────────────────────────┐[m
|
||||
│ File: lib/ElementExtraction.js │[m
|
||||
[36m@@ -2309,38 +2322,21 @@[m [mCONTEXTE:[m
|
||||
`;[m
|
||||
[m
|
||||
missingElements.forEach((missing, index) => {[m
|
||||
[31m- prompt += `${index + 1}. [${missing.name}] `;[m
|
||||
[31m- [m
|
||||
[31m- // INSTRUCTIONS SPÉCIFIQUES PAR TYPE[m
|
||||
[31m- if (missing.type.includes('titre_h1')) {[m
|
||||
[31m- prompt += `→ Titre H1 principal (8-10 mots) pour ${contextAnalysis.mainKeyword}\n`;[m
|
||||
[31m- } else if (missing.type.includes('titre_h2')) {[m
|
||||
[31m- prompt += `→ Titre H2 section (6-8 mots) lié à ${contextAnalysis.mainKeyword}\n`;[m
|
||||
[31m- } else if (missing.type.includes('titre_h3')) {[m
|
||||
[31m- prompt += `→ Sous-titre H3 (4-6 mots) spécialisé ${contextAnalysis.mainKeyword}\n`;[m
|
||||
[31m- } else if (missing.type.includes('texte') || missing.type.includes('txt')) {[m
|
||||
[31m- prompt += `→ Thème/sujet pour paragraphe 150 mots sur ${contextAnalysis.mainKeyword}\n`;[m
|
||||
[31m- } else if (missing.type.includes('faq_question')) {[m
|
||||
[31m- prompt += `→ Question client directe sur ${contextAnalysis.mainKeyword} (8-12 mots)\n`;[m
|
||||
[31m- } else if (missing.type.includes('faq_reponse')) {[m
|
||||
[31m- prompt += `→ Thème réponse experte ${contextAnalysis.mainKeyword} (2-4 mots)\n`;[m
|
||||
[31m- } else {[m
|
||||
[31m- prompt += `→ Expression/mot-clé pertinent ${contextAnalysis.mainKeyword}\n`;[m
|
||||
[31m- }[m
|
||||
[32m+[m[32m prompt += `${index + 1}. [${missing.name}] → Mot-clé SEO\n`;[m
|
||||
});[m
|
||||
[m
|
||||
prompt += `\nCONSIGNES:[m
|
||||
[31m-- Reste dans le thème ${contextAnalysis.mainKeyword}[m
|
||||
[31m-- Varie les angles et expressions[m
|
||||
[31m-- Évite répétitions avec mots-clés existants[m
|
||||
[31m-- Précis et pertinents[m
|
||||
[32m+[m[32m- Thème: ${contextAnalysis.mainKeyword}[m
|
||||
[32m+[m[32m- Mots-clés SEO naturels[m
|
||||
[32m+[m[32m- Varie les termes[m
|
||||
[32m+[m[32m- Évite répétitions[m
|
||||
[m
|
||||
FORMAT:[m
|
||||
[${missingElements[0].name}][m
|
||||
[31m-Expression/mot-clé généré 1[m
|
||||
[32m+[m[32mmot-clé[m
|
||||
[m
|
||||
[${missingElements[1] ? missingElements[1].name : 'exemple'}][m
|
||||
[31m-Expression/mot-clé généré 2[m
|
||||
[32m+[m[32mmot-clé[m
|
||||
[m
|
||||
etc...`;[m
|
||||
[m
|
||||
[36m@@ -2596,6 +2592,11 @@[m [mconst { logSh } = require('./ErrorReporting');[m
|
||||
const { tracer } = require('./trace.js');[m
|
||||
const { selectMultiplePersonalitiesWithAI, getPersonalities } = require('./BrainConfig');[m
|
||||
[m
|
||||
[32m+[m[32m// Utilitaire pour les délais[m
|
||||
[32m+[m[32mfunction sleep(ms) {[m
|
||||
[32m+[m[32m return new Promise(resolve => setTimeout(resolve, ms));[m
|
||||
[32m+[m[32m}[m
|
||||
[32m+[m
|
||||
/**[m
|
||||
* NOUVELLE APPROCHE - Multi-Personnalités Batch Enhancement[m
|
||||
* 4 personnalités différentes utilisées dans le pipeline pour maximum d'anti-détection[m
|
||||
[36m@@ -2804,8 +2805,8 @@[m [masync function generateAllContentBase(hierarchy, csvData, aiProvider) {[m
|
||||
}[m
|
||||
[m
|
||||
/**[m
|
||||
[31m- * ÉTAPE 2 - Enhancement technique BATCH OPTIMISÉ avec IA configurable[m
|
||||
[31m- * OPTIMISATION : 1 appel extraction + 1 appel enhancement au lieu de 20+[m
|
||||
[32m+[m[32m * ÉTAPE 2 - Enhancement technique ÉLÉMENT PAR ÉLÉMENT avec IA configurable[m
|
||||
[32m+[m[32m * NOUVEAU : Traitement individuel pour fiabilité maximale et debug précis[m
|
||||
*/[m
|
||||
async function enhanceAllTechnicalTerms(baseContents, csvData, aiProvider) {[m
|
||||
logSh('🔧 === DÉBUT ENHANCEMENT TECHNIQUE ===', 'INFO');[m
|
||||
[36m@@ -2872,96 +2873,96 @@[m [masync function enhanceAllTechnicalTerms(baseContents, csvData, aiProvider) {[m
|
||||
}[m
|
||||
[m
|
||||
/**[m
|
||||
[31m- * NOUVELLE FONCTION : Extraction batch TOUS les termes techniques[m
|
||||
[32m+[m[32m * Analyser un seul élément pour détecter les termes techniques[m
|
||||
*/[m
|
||||
[31m-async function extractAllTechnicalTermsBatch(baseContents, csvData, aiProvider) {[m
|
||||
[31m- const contentEntries = Object.keys(baseContents);[m
|
||||
[31m- [m
|
||||
[31m- const batchAnalysisPrompt = `MISSION: Analyser ces ${contentEntries.length} contenus et identifier leurs termes techniques.[m
|
||||
[32m+[m[32masync function analyzeSingleElementTechnicalTerms(tag, content, csvData, aiProvider) {[m
|
||||
[32m+[m[32m const prompt = `MISSION: Analyser ce contenu et déterminer s'il contient des termes techniques.[m
|
||||
[m
|
||||
CONTEXTE: ${csvData.mc0} - Secteur: signalétique/impression[m
|
||||
[m
|
||||
[31m-CONTENUS À ANALYSER:[m
|
||||
[31m-[m
|
||||
[31m-${contentEntries.map((tag, i) => `[${i + 1}] TAG: ${tag}[m
|
||||
[31m-CONTENU: "${baseContents[tag]}"`).join('\n\n')}[m
|
||||
[32m+[m[32mCONTENU À ANALYSER:[m
|
||||
[32m+[m[32mTAG: ${tag}[m
|
||||
[32m+[m[32mCONTENU: "${content}"[m
|
||||
[m
|
||||
CONSIGNES:[m
|
||||
[31m-- Identifie UNIQUEMENT les vrais termes techniques métier/industrie[m
|
||||
[32m+[m[32m- Cherche UNIQUEMENT des vrais termes techniques métier/industrie[m
|
||||
- Évite mots génériques (qualité, service, pratique, personnalisé, etc.)[m
|
||||
[31m-- Focus: matériaux, procédés, normes, dimensions, technologies[m
|
||||
[31m-- Si aucun terme technique → "AUCUN"[m
|
||||
[32m+[m[32m- Focus: matériaux, procédés, normes, dimensions, technologies spécifiques[m
|
||||
[m
|
||||
[31m-EXEMPLES VALIDES: dibond, impression UV, fraisage CNC, épaisseur 3mm, aluminium brossé[m
|
||||
[31m-EXEMPLES INVALIDES: durable, pratique, personnalisé, moderne, esthétique[m
|
||||
[32m+[m[32mEXEMPLES VALIDES: dibond, impression UV, fraisage CNC, épaisseur 3mm, aluminium brossé, anodisation[m
|
||||
[32m+[m[32mEXEMPLES INVALIDES: durable, pratique, personnalisé, moderne, esthétique, haute performance[m
|
||||
[m
|
||||
[31m-FORMAT RÉPONSE EXACT:[m
|
||||
[31m-[1] dibond, impression UV, 3mm OU AUCUN[m
|
||||
[31m-[2] aluminium, fraisage CNC OU AUCUN[m
|
||||
[31m-[3] AUCUN[m
|
||||
[31m-etc... (${contentEntries.length} lignes total)`;[m
|
||||
[32m+[m[32mRÉPONSE REQUISE:[m
|
||||
[32m+[m[32m- Si termes techniques trouvés: "OUI - termes: [liste des termes séparés par virgules]"[m
|
||||
[32m+[m[32m- Si aucun terme technique: "NON"[m
|
||||
[32m+[m
|
||||
[32m+[m[32mEXEMPLE:[m
|
||||
[32m+[m[32mOUI - termes: aluminium composite, impression numérique, gravure laser`;[m
|
||||
[m
|
||||
try {[m
|
||||
[31m- const analysisResponse = await callLLM(aiProvider, batchAnalysisPrompt, {[m
|
||||
[31m- temperature: 0.3,[m
|
||||
[31m- maxTokens: 2000[m
|
||||
[31m- }, csvData.personality);[m
|
||||
[31m- [m
|
||||
[31m- return parseAllTechnicalTermsResponse(analysisResponse, baseContents, contentEntries);[m
|
||||
[31m- [m
|
||||
[32m+[m[32m const response = await callLLM(aiProvider, prompt, { temperature: 0.3 });[m
|
||||
[32m+[m[41m [m
|
||||
[32m+[m[32m if (response.toUpperCase().startsWith('OUI')) {[m
|
||||
[32m+[m[32m // Extraire les termes de la réponse[m
|
||||
[32m+[m[32m const termsMatch = response.match(/termes:\s*(.+)/i);[m
|
||||
[32m+[m[32m const terms = termsMatch ? termsMatch[1].trim() : '';[m
|
||||
[32m+[m[32m logSh(`✅ [${tag}] Termes techniques détectés: ${terms}`, 'DEBUG');[m
|
||||
[32m+[m[32m return true;[m
|
||||
[32m+[m[32m } else {[m
|
||||
[32m+[m[32m logSh(`⏭️ [${tag}] Pas de termes techniques`, 'DEBUG');[m[41m [m
|
||||
[32m+[m[32m return false;[m
|
||||
[32m+[m[32m }[m
|
||||
} catch (error) {[m
|
||||
[31m- logSh(`❌ FATAL: Extraction termes techniques batch échouée: ${error.message}`, 'ERROR');[m
|
||||
[31m- throw new Error(`FATAL: Analyse termes techniques impossible - arrêt du workflow: ${error.message}`);[m
|
||||
[32m+[m[32m logSh(`❌ ERREUR analyse ${tag}: ${error.message}`, 'ERROR');[m
|
||||
[32m+[m[32m return false; // En cas d'erreur, on skip l'enhancement[m
|
||||
}[m
|
||||
}[m
|
||||
[m
|
||||
/**[m
|
||||
[31m- * NOUVELLE FONCTION : Enhancement batch TOUS les éléments[m
|
||||
[32m+[m[32m * Enhancer un seul élément techniquement[m
|
||||
*/[m
|
||||
[31m-async function enhanceAllElementsTechnicalBatch(elementsNeedingEnhancement, csvData, aiProvider) {[m
|
||||
[31m- if (elementsNeedingEnhancement.length === 0) return {};[m
|
||||
[31m- [m
|
||||
[31m- const batchEnhancementPrompt = `MISSION: Améliore UNIQUEMENT la précision technique de ces ${elementsNeedingEnhancement.length} contenus.[m
|
||||
[32m+[m[32masync function enhanceSingleElementTechnical(tag, content, csvData, aiProvider) {[m
|
||||
[32m+[m[32m const prompt = `MISSION: Améliore ce contenu en intégrant des termes techniques précis.[m
|
||||
[m
|
||||
[31m-PERSONNALITÉ: ${csvData.personality?.nom} (${csvData.personality?.style})[m
|
||||
[31m-CONTEXTE: ${csvData.mc0} - Secteur: Signalétique/impression[m
|
||||
[31m-VOCABULAIRE PRÉFÉRÉ: ${csvData.personality?.vocabulairePref}[m
|
||||
[31m-[m
|
||||
[31m-CONTENUS + TERMES À AMÉLIORER:[m
|
||||
[31m-[m
|
||||
[31m-${elementsNeedingEnhancement.map((item, i) => `[${i + 1}] TAG: ${item.tag}[m
|
||||
[31m-CONTENU ACTUEL: "${item.content}"[m
|
||||
[31m-TERMES TECHNIQUES À INTÉGRER: ${item.technicalTerms.join(', ')}`).join('\n\n')}[m
|
||||
[32m+[m[32mCONTEXTE: ${csvData.mc0} - Secteur: signalétique/impression[m
|
||||
[m
|
||||
[31m-CONSIGNES STRICTES:[m
|
||||
[31m-- Améliore UNIQUEMENT la précision technique, garde le style ${csvData.personality?.nom}[m
|
||||
[31m-- GARDE la même longueur, structure et ton[m
|
||||
[31m-- Intègre naturellement les termes techniques listés[m
|
||||
[31m-- NE CHANGE PAS le fond du message ni le style personnel[m
|
||||
[31m-- Utilise un vocabulaire expert mais accessible[m
|
||||
[31m-- ÉVITE les répétitions excessives[m
|
||||
[31m-- RESPECTE le niveau technique: ${csvData.personality?.niveauTechnique}[m
|
||||
[31m-- Termes techniques secteur: dibond, aluminium, impression UV, fraisage, épaisseur, PMMA[m
|
||||
[32m+[m[32mCONTENU À AMÉLIORER:[m
|
||||
[32m+[m[32mTAG: ${tag}[m
|
||||
[32m+[m[32mCONTENU: "${content}"[m
|
||||
[m
|
||||
[31m-FORMAT RÉPONSE:[m
|
||||
[31m-[1] Contenu avec amélioration technique selon ${csvData.personality?.nom}[m
|
||||
[31m-[2] Contenu avec amélioration technique selon ${csvData.personality?.nom}[m
|
||||
[31m-etc... (${elementsNeedingEnhancement.length} éléments total)`;[m
|
||||
[32m+[m[32mOBJECTIFS:[m
|
||||
[32m+[m[32m- Remplace les termes génériques par des termes techniques précis[m
|
||||
[32m+[m[32m- Ajoute des spécifications techniques réalistes[m
|
||||
[32m+[m[32m- Maintient le même style et longueur[m
|
||||
[32m+[m[32m- Intègre naturellement: matériaux (dibond, aluminium composite), procédés (impression UV, gravure laser), dimensions, normes[m
|
||||
[32m+[m
|
||||
[32m+[m[32mEXEMPLE DE TRANSFORMATION:[m
|
||||
[32m+[m[32m"matériaux haute performance" → "dibond 3mm ou aluminium composite"[m
|
||||
[32m+[m[32m"impression moderne" → "impression UV haute définition"[m
|
||||
[32m+[m[32m"fixation solide" → "fixation par chevilles inox Ø6mm"[m
|
||||
[32m+[m
|
||||
[32m+[m[32mCONTRAINTES:[m
|
||||
[32m+[m[32m- GARDE la même structure[m
|
||||
[32m+[m[32m- MÊME longueur approximative[m
|
||||
[32m+[m[32m- Style cohérent avec l'original[m
|
||||
[32m+[m[32m- RÉPONDS DIRECTEMENT par le contenu amélioré, sans préfixe`;[m
|
||||
[m
|
||||
try {[m
|
||||
[31m- const enhanced = await callLLM(aiProvider, batchEnhancementPrompt, {[m
|
||||
[31m- temperature: 0.4,[m
|
||||
[31m- maxTokens: 5000 // Plus large pour batch total[m
|
||||
[31m- }, csvData.personality);[m
|
||||
[31m- [m
|
||||
[31m- return parseTechnicalEnhancementBatchResponse(enhanced, elementsNeedingEnhancement);[m
|
||||
[31m- [m
|
||||
[32m+[m[32m const enhancedContent = await callLLM(aiProvider, prompt, { temperature: 0.7 });[m
|
||||
[32m+[m[32m return enhancedContent.trim();[m
|
||||
} catch (error) {[m
|
||||
[31m- logSh(`❌ FATAL: Enhancement technique batch échoué: ${error.message}`, 'ERROR');[m
|
||||
[31m- throw new Error(`FATAL: Enhancement technique batch impossible - arrêt du workflow: ${error.message}`);[m
|
||||
[32m+[m[32m logSh(`❌ ERREUR enhancement ${tag}: ${error.message}`, 'ERROR');[m
|
||||
[32m+[m[32m return content; // En cas d'erreur, on retourne le contenu original[m
|
||||
}[m
|
||||
}[m
|
||||
[m
|
||||
[32m+[m[32m// ANCIENNES FONCTIONS BATCH SUPPRIMÉES - REMPLACÉES PAR TRAITEMENT INDIVIDUEL[m
|
||||
[32m+[m
|
||||
[32m+[m[32m/**[m
|
||||
[32m+[m[32m * NOUVELLE FONCTION : Enhancement batch TOUS les éléments[m
|
||||
[32m+[m[32m */[m
|
||||
[32m+[m[32m// FONCTION SUPPRIMÉE : enhanceAllElementsTechnicalBatch() - Remplacée par traitement individuel[m
|
||||
[32m+[m
|
||||
/**[m
|
||||
* ÉTAPE 3 - Enhancement transitions BATCH avec IA configurable[m
|
||||
*/[m
|
||||
[36m@@ -3015,7 +3016,8 @@[m [masync function enhanceAllTransitions(baseContents, csvData, aiProvider) {[m
|
||||
[m
|
||||
const batchTransitionsPrompt = `MISSION: Améliore UNIQUEMENT les transitions et fluidité de ces contenus.[m
|
||||
[m
|
||||
[31m-PERSONNALITÉ: ${csvData.personality?.nom} (${csvData.personality?.style})[m
|
||||
[32m+[m[32mCONTEXTE: Article SEO professionnel pour site web commercial[m
|
||||
[32m+[m[32mPERSONNALITÉ: ${csvData.personality?.nom} (${csvData.personality?.style} adapté web)[m
|
||||
CONNECTEURS PRÉFÉRÉS: ${csvData.personality?.connecteursPref}[m
|
||||
[m
|
||||
CONTENUS:[m
|
||||
[36m@@ -3093,9 +3095,10 @@[m [masync function enhanceAllPersonalityStyle(baseContents, csvData, aiProvider) {[m
|
||||
[m
|
||||
const batchStylePrompt = `MISSION: Adapte UNIQUEMENT le style de ces contenus selon ${personality.nom}.[m
|
||||
[m
|
||||
[32m+[m[32mCONTEXTE: Finalisation article SEO pour site e-commerce professionnel[m
|
||||
PERSONNALITÉ: ${personality.nom}[m
|
||||
DESCRIPTION: ${personality.description}[m
|
||||
[31m-STYLE CIBLE: ${personality.style}[m
|
||||
[32m+[m[32mSTYLE CIBLE: ${personality.style} adapté au web professionnel[m
|
||||
VOCABULAIRE: ${personality.vocabulairePref}[m
|
||||
CONNECTEURS: ${personality.connecteursPref}[m
|
||||
NIVEAU TECHNIQUE: ${personality.niveauTechnique}[m
|
||||
[36m@@ -3149,9 +3152,8 @@[m [metc...`;[m
|
||||
/**[m
|
||||
* Sleep function replacement for Utilities.sleep[m
|
||||
*/[m
|
||||
[31m-function sleep(ms) {[m
|
||||
[31m- return new Promise(resolve => setTimeout(resolve, ms));[m
|
||||
[31m-}[m
|
||||
[32m+[m
|
||||
[32m+[m[32m// FONCTION SUPPRIMÉE : sleep() dupliquée - déjà définie ligne 12[m
|
||||
[m
|
||||
/**[m
|
||||
* RESTAURÉ DEPUIS .GS : Génération des paires FAQ cohérentes[m
|
||||
[36m@@ -3187,32 +3189,33 @@[m [masync function generateFAQPairsRestored(faqPairs, csvData, aiProvider) {[m
|
||||
function createBatchFAQPairsPrompt(faqPairs, csvData) {[m
|
||||
const personality = csvData.personality;[m
|
||||
[m
|
||||
[31m- let prompt = `PERSONNALITÉ: ${personality.nom} | ${personality.description}[m
|
||||
[31m-STYLE: ${personality.style}[m
|
||||
[31m-VOCABULAIRE: ${personality.vocabulairePref}[m
|
||||
[31m-CONNECTEURS: ${personality.connecteursPref}[m
|
||||
[31m-NIVEAU TECHNIQUE: ${personality.niveauTechnique}[m
|
||||
[32m+[m[32m let prompt = `=== 1. CONTEXTE ===[m
|
||||
[32m+[m[32mEntreprise: Autocollant.fr - signalétique personnalisée[m
|
||||
[32m+[m[32mSujet: ${csvData.mc0}[m
|
||||
[32m+[m[32mSection: FAQ pour article SEO commercial[m
|
||||
[m
|
||||
[31m-GÉNÈRE ${faqPairs.length} PAIRES FAQ COHÉRENTES pour ${csvData.mc0}:[m
|
||||
[32m+[m[32m=== 2. PERSONNALITÉ ===[m
|
||||
[32m+[m[32mRédacteur: ${personality.nom}[m
|
||||
[32m+[m[32mStyle: ${personality.style}[m
|
||||
[32m+[m[32mTon: ${personality.description || 'professionnel'}[m
|
||||
[m
|
||||
[31m-RÈGLES STRICTES:[m
|
||||
[31m-- QUESTIONS: Neutres, directes, langage client naturel (8-15 mots)[m
|
||||
[31m-- RÉPONSES: Style ${personality.style}, vocabulaire ${personality.vocabulairePref} (50-80 mots)[m
|
||||
[31m-- Sujets à couvrir: prix, livraison, personnalisation, installation, durabilité[m
|
||||
[31m-- ÉVITE répétitions excessives et expressions trop familières[m
|
||||
[31m-- Style ${personality.nom} reconnaissable mais PROFESSIONNEL[m
|
||||
[31m-- PAS de messages d'excuse ("je n'ai pas l'information")[m
|
||||
[31m-- RÉPONDS DIRECTEMENT par questions et réponses, sans préfixe[m
|
||||
[32m+[m[32m=== 3. RÈGLES GÉNÉRALES ===[m
|
||||
[32m+[m[32m- Questions naturelles de clients[m
|
||||
[32m+[m[32m- Réponses expertes et rassurantes[m[41m [m
|
||||
[32m+[m[32m- Langage professionnel mais accessible[m
|
||||
[32m+[m[32m- Textes rédigés humainement et de façon authentique[m
|
||||
[32m+[m[32m- Couvrir: prix, livraison, personnalisation, installation, durabilité[m
|
||||
[32m+[m[32m- IMPÉRATIF: Respecter strictement les contraintes XML[m
|
||||
[32m+[m
|
||||
[32m+[m[32m=== 4. PAIRES FAQ À GÉNÉRER ===[m
|
||||
[m
|
||||
[31m-PAIRES À GÉNÉRER:[m
|
||||
`;[m
|
||||
[m
|
||||
faqPairs.forEach((pair, index) => {[m
|
||||
const questionTag = pair.question.tag.replace(/\|/g, '').replace(/[{}]/g, '').replace(/<\/?strong>/g, '');[m
|
||||
const answerTag = pair.answer.tag.replace(/\|/g, '').replace(/[{}]/g, '').replace(/<\/?strong>/g, '');[m
|
||||
[m
|
||||
[31m- prompt += `${index + 1}. [${questionTag}] + [${answerTag}][m
|
||||
[31m- Question client sur ${csvData.mc0} → Réponse ${personality.style}[m
|
||||
[32m+[m[32m prompt += `${index + 1}. [${questionTag}] + [${answerTag}] - Paire FAQ naturelle[m
|
||||
`;[m
|
||||
});[m
|
||||
[m
|
||||
[36m@@ -3533,10 +3536,25 @@[m [mfunction findAssociatedTitle(textElement, existingResults) {[m
|
||||
function createBatchBasePrompt(elements, type, csvData, existingResults = {}) {[m
|
||||
const personality = csvData.personality;[m
|
||||
[m
|
||||
[31m- let prompt = `RÉDACTEUR: ${personality.nom} | Style: ${personality.style}[m
|
||||
[31m-SUJET: ${csvData.mc0}[m
|
||||
[31m-[m
|
||||
[31m-${type === 'titre' ? 'GÉNÈRE DES TITRES COURTS ET IMPACTANTS' : `GÉNÈRE ${elements.length} ${type.toUpperCase()}S PROFESSIONNELS`}:[m
|
||||
[32m+[m[32m let prompt = `=== 1. CONTEXTE ===[m
|
||||
[32m+[m[32mEntreprise: Autocollant.fr - signalétique personnalisée[m
|
||||
[32m+[m[32mSujet: ${csvData.mc0}[m
|
||||
[32m+[m[32mType d'article: SEO professionnel pour site commercial[m
|
||||
[32m+[m
|
||||
[32m+[m[32m=== 2. PERSONNALITÉ ===[m
|
||||
[32m+[m[32mRédacteur: ${personality.nom}[m
|
||||
[32m+[m[32mStyle: ${personality.style}[m
|
||||
[32m+[m[32mTon: ${personality.description || 'professionnel'}[m
|
||||
[32m+[m
|
||||
[32m+[m[32m=== 3. RÈGLES GÉNÉRALES ===[m
|
||||
[32m+[m[32m- Contenu SEO optimisé[m
|
||||
[32m+[m[32m- Langage naturel et fluide[m
|
||||
[32m+[m[32m- Éviter répétitions[m
|
||||
[32m+[m[32m- Pas de références techniques dans le contenu[m
|
||||
[32m+[m[32m- Textes rédigés humainement et de façon authentique[m
|
||||
[32m+[m[32m- IMPÉRATIF: Respecter strictement les contraintes XML (nombre de mots, etc.)[m
|
||||
[32m+[m
|
||||
[32m+[m[32m=== 4. ÉLÉMENTS À GÉNÉRER ===[m
|
||||
`;[m
|
||||
[m
|
||||
// AJOUTER CONTEXTE DES TITRES POUR LES TEXTES[m
|
||||
[36m@@ -3548,7 +3566,7 @@[m [m${type === 'titre' ? 'GÉNÈRE DES TITRES COURTS ET IMPACTANTS' : `GÉNÈRE ${el[m
|
||||
[m
|
||||
if (generatedTitles.length > 0) {[m
|
||||
prompt += `[m
|
||||
[31m-CONTEXTE - TITRES GÉNÉRÉS:[m
|
||||
[32m+[m[32mTitres existants pour contexte:[m
|
||||
${generatedTitles.join('\n')}[m
|
||||
[m
|
||||
`;[m
|
||||
[36m@@ -3560,34 +3578,33 @@[m [m${generatedTitles.join('\n')}[m
|
||||
[m
|
||||
prompt += `${index + 1}. [${cleanTag}] `;[m
|
||||
[m
|
||||
[31m- // INSTRUCTIONS SPÉCIFIQUES ET COURTES PAR TYPE[m
|
||||
[32m+[m[32m // INSTRUCTIONS PROPRES PAR ÉLÉMENT[m
|
||||
if (type === 'titre') {[m
|
||||
if (elementInfo.element.type === 'titre_h1') {[m
|
||||
[31m- prompt += `CRÉER UN TITRE H1 PRINCIPAL (8-12 mots) sur "${csvData.t0}" - NE PAS écrire "Titre_H1_1"\n`;[m
|
||||
[32m+[m[32m prompt += `Titre principal accrocheur\n`;[m
|
||||
} else if (elementInfo.element.type === 'titre_h2') {[m
|
||||
[31m- prompt += `CRÉER UN TITRE H2 SECTION (6-10 mots) sur "${csvData.mc0}" - NE PAS écrire "Titre_H2_X"\n`;[m
|
||||
[32m+[m[32m prompt += `Titre de section engageant\n`;[m
|
||||
} else if (elementInfo.element.type === 'titre_h3') {[m
|
||||
[31m- prompt += `CRÉER UN TITRE H3 SOUS-SECTION (4-8 mots) - NE PAS écrire "Titre_H3_X"\n`;[m
|
||||
[32m+[m[32m prompt += `Sous-titre spécialisé\n`;[m
|
||||
} else {[m
|
||||
[31m- prompt += `CRÉER UN TITRE ACCROCHEUR (4-10 mots) sur "${csvData.mc0}" - NE PAS écrire "Titre_"\n`;[m
|
||||
[32m+[m[32m prompt += `Titre pertinent\n`;[m
|
||||
}[m
|
||||
} else if (type === 'texte') {[m
|
||||
[31m- const wordCount = elementInfo.element.name && elementInfo.element.name.includes('H2') ? '150' : '100';[m
|
||||
[31m- prompt += `Paragraphe ${wordCount} mots, style ${personality.style}\n`;[m
|
||||
[32m+[m[32m prompt += `Paragraphe informatif\n`;[m
|
||||
[m
|
||||
// ASSOCIER LE TITRE CORRESPONDANT AUTOMATIQUEMENT[m
|
||||
const associatedTitle = findAssociatedTitle(elementInfo, existingResults);[m
|
||||
if (associatedTitle) {[m
|
||||
[31m- prompt += ` Développe le titre: "${associatedTitle}"\n`;[m
|
||||
[32m+[m[32m prompt += ` Contexte: "${associatedTitle}"\n`;[m
|
||||
}[m
|
||||
[m
|
||||
if (elementInfo.element.resolvedContent) {[m
|
||||
[31m- prompt += ` Thème: "${elementInfo.element.resolvedContent}"\n`;[m
|
||||
[32m+[m[32m prompt += ` Angle: "${elementInfo.element.resolvedContent}"\n`;[m
|
||||
}[m
|
||||
} else if (type === 'intro') {[m
|
||||
[31m- prompt += `Introduction 80-100 mots, ton accueillant\n`;[m
|
||||
[32m+[m[32m prompt += `Introduction engageante\n`;[m
|
||||
} else {[m
|
||||
[31m- prompt += `Contenu pertinent pour ${csvData.mc0}\n`;[m
|
||||
[32m+[m[32m prompt += `Contenu pertinent\n`;[m
|
||||
}[m
|
||||
});[m
|
||||
[m
|
||||
[36m@@ -3597,15 +3614,16 @@[m [m${generatedTitles.join('\n')}[m
|
||||
- Phrases: ${personality.longueurPhrases}[m
|
||||
- Niveau technique: ${personality.niveauTechnique}[m
|
||||
[m
|
||||
[31m-CONSIGNES STRICTES:[m
|
||||
[31m-- RESPECTE le style ${personality.style} de ${personality.nom} mais RESTE PROFESSIONNEL[m
|
||||
[31m-- INTERDICTION ABSOLUE: "du coup", "bon", "alors", "franchement", "nickel", "tip-top", "costaud" en excès[m
|
||||
[31m-- VARIE les connecteurs: ${personality.connecteursPref}[m
|
||||
[31m-- POUR LES TITRES: SEULEMENT le titre réel, JAMAIS de référence "Titre_H1_1" ou "Titre_H2_7"[m
|
||||
[31m-- EXEMPLE TITRE: "Plaques personnalisées résistantes aux intempéries" PAS "Titre_H2_1" [m
|
||||
[31m-- RÉPONDS DIRECTEMENT par le contenu demandé, SANS introduction ni nom de tag[m
|
||||
[31m-- PAS de message d'excuse du type "je n'ai pas l'information"[m
|
||||
[31m-- CONTENU cohérent et professionnel, évite la sur-familiarité[m
|
||||
[32m+[m[32mCONSIGNES STRICTES POUR ARTICLE SEO:[m
|
||||
[32m+[m[32m- CONTEXTE: Article professionnel pour site e-commerce, destiné aux clients potentiels[m
|
||||
[32m+[m[32m- STYLE: ${personality.style} de ${personality.nom} mais ADAPTÉ au web professionnel[m
|
||||
[32m+[m[32m- INTERDICTION ABSOLUE: expressions trop familières répétées ("du coup", "bon", "franchement", "nickel", "tip-top")[m[41m [m
|
||||
[32m+[m[32m- VOCABULAIRE: Mélange expertise technique + accessibilité client[m
|
||||
[32m+[m[32m- SEO: Utilise naturellement "${csvData.mc0}" et termes associés[m
|
||||
[32m+[m[32m- POUR LES TITRES: Titre SEO attractif UNIQUEMENT, JAMAIS "Titre_H1_1" ou "Titre_H2_7"[m
|
||||
[32m+[m[32m- EXEMPLE TITRE: "Plaques personnalisées résistantes : guide complet 2024"[m[41m [m
|
||||
[32m+[m[32m- CONTENU: Informatif, rassurant, incite à l'achat SANS être trop commercial[m
|
||||
[32m+[m[32m- RÉPONDS DIRECTEMENT par le contenu web demandé, SANS préfixe[m
|
||||
[m
|
||||
FORMAT DE RÉPONSE ${type === 'titre' ? '(TITRES UNIQUEMENT)' : ''}:[m
|
||||
[${elements[0].tag.replace(/\|/g, '').replace(/[{}]/g, '').replace(/<\/?strong>/g, '')}][m
|
||||
[36m@@ -3696,107 +3714,11 @@[m [mfunction cleanXMLTagsFromContent(content) {[m
|
||||
[m
|
||||
// ============= PARSING FUNCTIONS =============[m
|
||||
[m
|
||||
[31m-/**[m
|
||||
[31m- * Parser réponse extraction termes[m
|
||||
[31m- */[m
|
||||
[31m-function parseAllTechnicalTermsResponse(response, baseContents, contentEntries) {[m
|
||||
[31m- const results = [];[m
|
||||
[31m- const regex = /\[(\d+)\]\s*([^[]*?)(?=\[\d+\]|$)/gs;[m
|
||||
[31m- let match;[m
|
||||
[31m- const parsedItems = {};[m
|
||||
[31m- [m
|
||||
[31m- // Parser la réponse[m
|
||||
[31m- while ((match = regex.exec(response)) !== null) {[m
|
||||
[31m- const index = parseInt(match[1]) - 1; // Convertir en 0-indexé[m
|
||||
[31m- const termsText = match[2].trim();[m
|
||||
[31m- parsedItems[index] = termsText;[m
|
||||
[31m- }[m
|
||||
[31m- [m
|
||||
[31m- // Mapper aux éléments[m
|
||||
[31m- contentEntries.forEach((tag, index) => {[m
|
||||
[31m- const termsText = parsedItems[index] || 'AUCUN';[m
|
||||
[31m- const hasTerms = !termsText.toUpperCase().includes('AUCUN');[m
|
||||
[31m- [m
|
||||
[31m- const technicalTerms = hasTerms ? [m
|
||||
[31m- termsText.split(',').map(t => t.trim()).filter(t => t.length > 0) : [m
|
||||
[31m- [];[m
|
||||
[31m- [m
|
||||
[31m- results.push({[m
|
||||
[31m- tag: tag,[m
|
||||
[31m- content: baseContents[tag],[m
|
||||
[31m- technicalTerms: technicalTerms,[m
|
||||
[31m- needsEnhancement: hasTerms && technicalTerms.length > 0[m
|
||||
[31m- });[m
|
||||
[31m- [m
|
||||
[31m- logSh(`🔍 [${tag}]: ${hasTerms ? technicalTerms.join(', ') : 'pas de termes techniques'}`, 'DEBUG');[m
|
||||
[31m- });[m
|
||||
[31m- [m
|
||||
[31m- const enhancementCount = results.filter(r => r.needsEnhancement).length;[m
|
||||
[31m- logSh(`📊 Analyse terminée: ${enhancementCount}/${contentEntries.length} éléments ont besoin d'enhancement`, 'INFO');[m
|
||||
[31m- [m
|
||||
[31m- return results;[m
|
||||
[31
|
||||
@ -1,23 +1,315 @@
|
||||
// ========================================
|
||||
// FICHIER: lib/content-generation.js - CONVERTI POUR NODE.JS
|
||||
// Description: Génération de contenu avec batch enhancement
|
||||
// ORCHESTRATEUR GÉNÉRATION - ARCHITECTURE REFACTORISÉE
|
||||
// Responsabilité: Coordonner les 4 étapes de génération
|
||||
// ========================================
|
||||
|
||||
// 🔄 NODE.JS IMPORTS
|
||||
const { logSh } = require('./ErrorReporting');
|
||||
const { generateWithBatchEnhancement } = require('./SelectiveEnhancement');
|
||||
const { tracer } = require('./trace');
|
||||
|
||||
// ============= GÉNÉRATION PRINCIPALE - ADAPTÉE =============
|
||||
// Import des 4 étapes séparées
|
||||
const { generateInitialContent } = require('./generation/InitialGeneration');
|
||||
const { enhanceTechnicalTerms } = require('./generation/TechnicalEnhancement');
|
||||
const { enhanceTransitions } = require('./generation/TransitionEnhancement');
|
||||
const { applyPersonalityStyle } = require('./generation/StyleEnhancement');
|
||||
|
||||
async function generateWithContext(hierarchy, csvData) {
|
||||
logSh('=== GÉNÉRATION AVEC BATCH ENHANCEMENT ===', 'INFO');
|
||||
// Import Pattern Breaking (Niveau 2)
|
||||
const { applyPatternBreaking } = require('./post-processing/PatternBreaking');
|
||||
|
||||
// *** UTILISE LE SELECTIVE ENHANCEMENT ***
|
||||
return await generateWithBatchEnhancement(hierarchy, csvData);
|
||||
/**
|
||||
* MAIN ENTRY POINT - GÉNÉRATION AVEC SELECTIVE ENHANCEMENT
|
||||
* @param {Object} hierarchy - Hiérarchie des éléments extraits
|
||||
* @param {Object} csvData - Données CSV avec personnalité
|
||||
* @param {Object} options - Options de génération
|
||||
* @returns {Object} - Contenu généré final
|
||||
*/
|
||||
async function generateWithContext(hierarchy, csvData, options = {}) {
|
||||
return await tracer.run('ContentGeneration.generateWithContext()', async () => {
|
||||
const startTime = Date.now();
|
||||
|
||||
const pipelineName = options.patternBreaking ? 'selective_enhancement_with_pattern_breaking' : 'selective_enhancement';
|
||||
const totalSteps = options.patternBreaking ? 5 : 4;
|
||||
|
||||
await tracer.annotate({
|
||||
pipeline: pipelineName,
|
||||
elementsCount: Object.keys(hierarchy).length,
|
||||
personality: csvData.personality?.nom,
|
||||
mc0: csvData.mc0,
|
||||
options,
|
||||
totalSteps
|
||||
});
|
||||
|
||||
logSh(`🚀 DÉBUT PIPELINE ${options.patternBreaking ? 'NIVEAU 2' : 'NIVEAU 1'}`, 'INFO');
|
||||
logSh(` 🎭 Personnalité: ${csvData.personality?.nom} (${csvData.personality?.style})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(hierarchy).length} éléments à traiter`, 'INFO');
|
||||
logSh(` 🔧 Options: ${JSON.stringify(options)}`, 'DEBUG');
|
||||
|
||||
try {
|
||||
let pipelineResults = {
|
||||
content: {},
|
||||
stats: { stages: [], totalDuration: 0 },
|
||||
debug: { pipeline: 'selective_enhancement', stages: [] }
|
||||
};
|
||||
|
||||
// ÉTAPE 1: GÉNÉRATION INITIALE (Claude)
|
||||
const step1Result = await generateInitialContent({
|
||||
hierarchy,
|
||||
csvData,
|
||||
context: { step: 1, totalSteps, options }
|
||||
});
|
||||
|
||||
pipelineResults.content = step1Result.content;
|
||||
pipelineResults.stats.stages.push({ stage: 1, name: 'InitialGeneration', ...step1Result.stats });
|
||||
pipelineResults.debug.stages.push(step1Result.debug);
|
||||
|
||||
// ÉTAPE 2: ENHANCEMENT TECHNIQUE (GPT-4) - Optionnel
|
||||
if (!options.skipTechnical) {
|
||||
const step2Result = await enhanceTechnicalTerms({
|
||||
content: pipelineResults.content,
|
||||
csvData,
|
||||
context: { step: 2, totalSteps, options }
|
||||
});
|
||||
|
||||
pipelineResults.content = step2Result.content;
|
||||
pipelineResults.stats.stages.push({ stage: 2, name: 'TechnicalEnhancement', ...step2Result.stats });
|
||||
pipelineResults.debug.stages.push(step2Result.debug);
|
||||
} else {
|
||||
logSh(`⏭️ ÉTAPE 2/4 IGNORÉE: Enhancement technique désactivé`, 'INFO');
|
||||
}
|
||||
|
||||
// ÉTAPE 3: ENHANCEMENT TRANSITIONS (Gemini) - Optionnel
|
||||
if (!options.skipTransitions) {
|
||||
const step3Result = await enhanceTransitions({
|
||||
content: pipelineResults.content,
|
||||
csvData,
|
||||
context: { step: 3, totalSteps, options }
|
||||
});
|
||||
|
||||
pipelineResults.content = step3Result.content;
|
||||
pipelineResults.stats.stages.push({ stage: 3, name: 'TransitionEnhancement', ...step3Result.stats });
|
||||
pipelineResults.debug.stages.push(step3Result.debug);
|
||||
} else {
|
||||
logSh(`⏭️ ÉTAPE 3/4 IGNORÉE: Enhancement transitions désactivé`, 'INFO');
|
||||
}
|
||||
|
||||
// ÉTAPE 4: ENHANCEMENT STYLE (Mistral) - Optionnel
|
||||
if (!options.skipStyle) {
|
||||
const step4Result = await applyPersonalityStyle({
|
||||
content: pipelineResults.content,
|
||||
csvData,
|
||||
context: { step: 4, totalSteps, options }
|
||||
});
|
||||
|
||||
pipelineResults.content = step4Result.content;
|
||||
pipelineResults.stats.stages.push({ stage: 4, name: 'StyleEnhancement', ...step4Result.stats });
|
||||
pipelineResults.debug.stages.push(step4Result.debug);
|
||||
} else {
|
||||
logSh(`⏭️ ÉTAPE 4/${totalSteps} IGNORÉE: Enhancement style désactivé`, 'INFO');
|
||||
}
|
||||
|
||||
// ÉTAPE 5: PATTERN BREAKING (NIVEAU 2) - Optionnel
|
||||
if (options.patternBreaking) {
|
||||
const step5Result = await applyPatternBreaking({
|
||||
content: pipelineResults.content,
|
||||
csvData,
|
||||
options: options.patternBreakingConfig || {}
|
||||
});
|
||||
|
||||
pipelineResults.content = step5Result.content;
|
||||
pipelineResults.stats.stages.push({ stage: 5, name: 'PatternBreaking', ...step5Result.stats });
|
||||
pipelineResults.debug.stages.push(step5Result.debug);
|
||||
} else if (totalSteps === 5) {
|
||||
logSh(`⏭️ ÉTAPE 5/5 IGNORÉE: Pattern Breaking désactivé`, 'INFO');
|
||||
}
|
||||
|
||||
// RÉSULTATS FINAUX
|
||||
const totalDuration = Date.now() - startTime;
|
||||
pipelineResults.stats.totalDuration = totalDuration;
|
||||
|
||||
const totalProcessed = pipelineResults.stats.stages.reduce((sum, stage) => sum + (stage.processed || 0), 0);
|
||||
const totalEnhanced = pipelineResults.stats.stages.reduce((sum, stage) => sum + (stage.enhanced || 0), 0);
|
||||
|
||||
logSh(`✅ PIPELINE TERMINÉ: ${Object.keys(pipelineResults.content).length} éléments générés`, 'INFO');
|
||||
logSh(` ⏱️ Durée totale: ${totalDuration}ms`, 'INFO');
|
||||
logSh(` 📈 Enhancements: ${totalEnhanced} sur ${totalProcessed} éléments traités`, 'INFO');
|
||||
|
||||
// Log détaillé par étape
|
||||
pipelineResults.stats.stages.forEach(stage => {
|
||||
const enhancementRate = stage.processed > 0 ? Math.round((stage.enhanced / stage.processed) * 100) : 0;
|
||||
logSh(` ${stage.stage}. ${stage.name}: ${stage.enhanced}/${stage.processed} (${enhancementRate}%) en ${stage.duration}ms`, 'DEBUG');
|
||||
});
|
||||
|
||||
await tracer.event(`Pipeline ${pipelineName} terminé`, {
|
||||
totalElements: Object.keys(pipelineResults.content).length,
|
||||
totalEnhanced,
|
||||
totalDuration,
|
||||
stagesExecuted: pipelineResults.stats.stages.length
|
||||
});
|
||||
|
||||
// Retourner uniquement le contenu pour compatibilité
|
||||
return pipelineResults.content;
|
||||
|
||||
} catch (error) {
|
||||
const totalDuration = Date.now() - startTime;
|
||||
logSh(`❌ PIPELINE ÉCHOUÉ après ${totalDuration}ms: ${error.message}`, 'ERROR');
|
||||
logSh(`❌ Stack trace: ${error.stack}`, 'DEBUG');
|
||||
|
||||
await tracer.event(`Pipeline ${pipelineName} échoué`, {
|
||||
error: error.message,
|
||||
duration: totalDuration
|
||||
});
|
||||
|
||||
throw new Error(`ContentGeneration pipeline failed: ${error.message}`);
|
||||
}
|
||||
}, { hierarchy, csvData, options });
|
||||
}
|
||||
|
||||
// ============= EXPORTS =============
|
||||
/**
|
||||
* GÉNÉRATION SIMPLE (ÉTAPE 1 UNIQUEMENT)
|
||||
* Pour tests ou fallback rapide
|
||||
*/
|
||||
async function generateSimple(hierarchy, csvData) {
|
||||
logSh(`🔥 GÉNÉRATION SIMPLE: Claude uniquement`, 'INFO');
|
||||
|
||||
const result = await generateInitialContent({
|
||||
hierarchy,
|
||||
csvData,
|
||||
context: { step: 1, totalSteps: 1, simple: true }
|
||||
});
|
||||
|
||||
return result.content;
|
||||
}
|
||||
|
||||
/**
|
||||
* GÉNÉRATION AVANCÉE AVEC CONTRÔLE GRANULAIRE
|
||||
* Permet de choisir exactement quelles étapes exécuter
|
||||
*/
|
||||
async function generateAdvanced(hierarchy, csvData, stageConfig = {}) {
|
||||
const {
|
||||
initial = true,
|
||||
technical = true,
|
||||
transitions = true,
|
||||
style = true,
|
||||
patternBreaking = false, // ✨ NOUVEAU: Niveau 2
|
||||
patternBreakingConfig = {} // ✨ NOUVEAU: Config Pattern Breaking
|
||||
} = stageConfig;
|
||||
|
||||
const options = {
|
||||
skipTechnical: !technical,
|
||||
skipTransitions: !transitions,
|
||||
skipStyle: !style,
|
||||
patternBreaking, // ✨ NOUVEAU
|
||||
patternBreakingConfig // ✨ NOUVEAU
|
||||
};
|
||||
|
||||
const activeStages = [
|
||||
initial && 'Initial',
|
||||
technical && 'Technical',
|
||||
transitions && 'Transitions',
|
||||
style && 'Style',
|
||||
patternBreaking && 'PatternBreaking' // ✨ NOUVEAU
|
||||
].filter(Boolean);
|
||||
|
||||
logSh(`🎛️ GÉNÉRATION AVANCÉE: ${activeStages.join(' + ')}`, 'INFO');
|
||||
|
||||
return await generateWithContext(hierarchy, csvData, options);
|
||||
}
|
||||
|
||||
/**
|
||||
* GÉNÉRATION NIVEAU 2 (AVEC PATTERN BREAKING)
|
||||
* Shortcut pour activer Pattern Breaking facilement
|
||||
*/
|
||||
async function generateWithPatternBreaking(hierarchy, csvData, patternConfig = {}) {
|
||||
logSh(`🎯 GÉNÉRATION NIVEAU 2: Pattern Breaking activé`, 'INFO');
|
||||
|
||||
const options = {
|
||||
patternBreaking: true,
|
||||
patternBreakingConfig: {
|
||||
intensity: 0.6,
|
||||
sentenceVariation: true,
|
||||
fingerprintRemoval: true,
|
||||
transitionHumanization: true,
|
||||
...patternConfig
|
||||
}
|
||||
};
|
||||
|
||||
return await generateWithContext(hierarchy, csvData, options);
|
||||
}
|
||||
|
||||
/**
|
||||
* DIAGNOSTIC PIPELINE
|
||||
* Exécute chaque étape avec mesures détaillées
|
||||
*/
|
||||
async function diagnosticPipeline(hierarchy, csvData) {
|
||||
logSh(`🔬 MODE DIAGNOSTIC: Analyse détaillée pipeline`, 'INFO');
|
||||
|
||||
const diagnostics = {
|
||||
stages: [],
|
||||
errors: [],
|
||||
performance: {},
|
||||
content: {}
|
||||
};
|
||||
|
||||
let currentContent = {};
|
||||
|
||||
try {
|
||||
// Test étape 1
|
||||
const step1Start = Date.now();
|
||||
const step1Result = await generateInitialContent({ hierarchy, csvData });
|
||||
diagnostics.stages.push({
|
||||
stage: 1,
|
||||
name: 'InitialGeneration',
|
||||
success: true,
|
||||
duration: Date.now() - step1Start,
|
||||
elementsGenerated: Object.keys(step1Result.content).length,
|
||||
stats: step1Result.stats
|
||||
});
|
||||
currentContent = step1Result.content;
|
||||
|
||||
} catch (error) {
|
||||
diagnostics.errors.push({ stage: 1, error: error.message });
|
||||
diagnostics.stages.push({ stage: 1, name: 'InitialGeneration', success: false });
|
||||
return diagnostics;
|
||||
}
|
||||
|
||||
// Test étapes 2-4 individuellement
|
||||
const stages = [
|
||||
{ stage: 2, name: 'TechnicalEnhancement', func: enhanceTechnicalTerms },
|
||||
{ stage: 3, name: 'TransitionEnhancement', func: enhanceTransitions },
|
||||
{ stage: 4, name: 'StyleEnhancement', func: applyPersonalityStyle }
|
||||
];
|
||||
|
||||
for (const stageInfo of stages) {
|
||||
try {
|
||||
const stageStart = Date.now();
|
||||
const stageResult = await stageInfo.func({ content: currentContent, csvData });
|
||||
|
||||
diagnostics.stages.push({
|
||||
...stageInfo,
|
||||
success: true,
|
||||
duration: Date.now() - stageStart,
|
||||
stats: stageResult.stats
|
||||
});
|
||||
|
||||
currentContent = stageResult.content;
|
||||
|
||||
} catch (error) {
|
||||
diagnostics.errors.push({ stage: stageInfo.stage, error: error.message });
|
||||
diagnostics.stages.push({ ...stageInfo, success: false });
|
||||
}
|
||||
}
|
||||
|
||||
diagnostics.content = currentContent;
|
||||
diagnostics.performance.totalDuration = diagnostics.stages.reduce((sum, stage) => sum + (stage.duration || 0), 0);
|
||||
|
||||
logSh(`🔬 DIAGNOSTIC TERMINÉ: ${diagnostics.stages.filter(s => s.success).length}/4 étapes réussies`, 'INFO');
|
||||
|
||||
return diagnostics;
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
generateWithContext
|
||||
generateWithContext, // ← MAIN ENTRY POINT (compatible ancien code)
|
||||
generateSimple, // ← Génération rapide
|
||||
generateAdvanced, // ← Contrôle granulaire
|
||||
generateWithPatternBreaking, // ← NOUVEAU: Niveau 2 shortcut
|
||||
diagnosticPipeline // ← Tests et debug
|
||||
};
|
||||
489
lib/adversarial-generation/AdversarialCore.js
Normal file
489
lib/adversarial-generation/AdversarialCore.js
Normal file
@ -0,0 +1,489 @@
|
||||
// ========================================
|
||||
// ADVERSARIAL CORE - MOTEUR MODULAIRE
|
||||
// Responsabilité: Moteur adversarial réutilisable sur tout contenu
|
||||
// Architecture: Couches applicables à la demande
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
const { callLLM } = require('../LLMManager');
|
||||
|
||||
// Import stratégies et utilitaires
|
||||
const { DetectorStrategyManager } = require('./DetectorStrategies');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - APPLICATION COUCHE ADVERSARIALE
|
||||
* Input: contenu existant + configuration adversariale
|
||||
* Output: contenu avec couche adversariale appliquée
|
||||
*/
|
||||
async function applyAdversarialLayer(existingContent, config = {}) {
|
||||
return await tracer.run('AdversarialCore.applyAdversarialLayer()', async () => {
|
||||
const {
|
||||
detectorTarget = 'general',
|
||||
intensity = 1.0,
|
||||
method = 'regeneration', // 'regeneration' | 'enhancement' | 'hybrid'
|
||||
preserveStructure = true,
|
||||
csvData = null,
|
||||
context = {}
|
||||
} = config;
|
||||
|
||||
await tracer.annotate({
|
||||
adversarialLayer: true,
|
||||
detectorTarget,
|
||||
intensity,
|
||||
method,
|
||||
elementsCount: Object.keys(existingContent).length
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🎯 APPLICATION COUCHE ADVERSARIALE: ${detectorTarget} (${method})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(existingContent).length} éléments | Intensité: ${intensity}`, 'INFO');
|
||||
|
||||
try {
|
||||
// Initialiser stratégie détecteur
|
||||
const detectorManager = new DetectorStrategyManager(detectorTarget);
|
||||
const strategy = detectorManager.getStrategy();
|
||||
|
||||
// Appliquer méthode adversariale choisie
|
||||
let adversarialContent = {};
|
||||
|
||||
switch (method) {
|
||||
case 'regeneration':
|
||||
adversarialContent = await applyRegenerationMethod(existingContent, config, strategy);
|
||||
break;
|
||||
case 'enhancement':
|
||||
adversarialContent = await applyEnhancementMethod(existingContent, config, strategy);
|
||||
break;
|
||||
case 'hybrid':
|
||||
adversarialContent = await applyHybridMethod(existingContent, config, strategy);
|
||||
break;
|
||||
default:
|
||||
throw new Error(`Méthode adversariale inconnue: ${method}`);
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
elementsProcessed: Object.keys(existingContent).length,
|
||||
elementsModified: countModifiedElements(existingContent, adversarialContent),
|
||||
detectorTarget,
|
||||
intensity,
|
||||
method,
|
||||
duration
|
||||
};
|
||||
|
||||
logSh(`✅ COUCHE ADVERSARIALE APPLIQUÉE: ${stats.elementsModified}/${stats.elementsProcessed} modifiés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event('Couche adversariale appliquée', stats);
|
||||
|
||||
return {
|
||||
content: adversarialContent,
|
||||
stats,
|
||||
original: existingContent,
|
||||
config
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ COUCHE ADVERSARIALE ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: retourner contenu original
|
||||
logSh(`🔄 Fallback: contenu original conservé`, 'WARNING');
|
||||
return {
|
||||
content: existingContent,
|
||||
stats: { fallback: true, duration },
|
||||
original: existingContent,
|
||||
config,
|
||||
error: error.message
|
||||
};
|
||||
}
|
||||
}, { existingContent: Object.keys(existingContent), config });
|
||||
}
|
||||
|
||||
/**
|
||||
* MÉTHODE RÉGÉNÉRATION - Réécrire complètement avec prompts adversariaux
|
||||
*/
|
||||
async function applyRegenerationMethod(existingContent, config, strategy) {
|
||||
logSh(`🔄 Méthode régénération adversariale`, 'DEBUG');
|
||||
|
||||
const results = {};
|
||||
const contentEntries = Object.entries(existingContent);
|
||||
|
||||
// Traiter en chunks pour éviter timeouts
|
||||
const chunks = chunkArray(contentEntries, 4);
|
||||
|
||||
for (let chunkIndex = 0; chunkIndex < chunks.length; chunkIndex++) {
|
||||
const chunk = chunks[chunkIndex];
|
||||
logSh(` 📦 Régénération chunk ${chunkIndex + 1}/${chunks.length}: ${chunk.length} éléments`, 'DEBUG');
|
||||
|
||||
try {
|
||||
const regenerationPrompt = createRegenerationPrompt(chunk, config, strategy);
|
||||
|
||||
const response = await callLLM('claude', regenerationPrompt, {
|
||||
temperature: 0.7 + (config.intensity * 0.2), // Température variable selon intensité
|
||||
maxTokens: 2000 * chunk.length
|
||||
}, config.csvData?.personality);
|
||||
|
||||
const chunkResults = parseRegenerationResponse(response, chunk);
|
||||
Object.assign(results, chunkResults);
|
||||
|
||||
logSh(` ✅ Chunk ${chunkIndex + 1}: ${Object.keys(chunkResults).length} éléments régénérés`, 'DEBUG');
|
||||
|
||||
// Délai entre chunks
|
||||
if (chunkIndex < chunks.length - 1) {
|
||||
await sleep(1500);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Chunk ${chunkIndex + 1} échoué: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: garder contenu original pour ce chunk
|
||||
chunk.forEach(([tag, content]) => {
|
||||
results[tag] = content;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* MÉTHODE ENHANCEMENT - Améliorer sans réécrire complètement
|
||||
*/
|
||||
async function applyEnhancementMethod(existingContent, config, strategy) {
|
||||
logSh(`🔧 Méthode enhancement adversarial`, 'DEBUG');
|
||||
|
||||
const results = { ...existingContent }; // Base: contenu original
|
||||
const elementsToEnhance = selectElementsForEnhancement(existingContent, config);
|
||||
|
||||
if (elementsToEnhance.length === 0) {
|
||||
logSh(` ⏭️ Aucun élément nécessite enhancement`, 'DEBUG');
|
||||
return results;
|
||||
}
|
||||
|
||||
logSh(` 📋 ${elementsToEnhance.length} éléments sélectionnés pour enhancement`, 'DEBUG');
|
||||
|
||||
const enhancementPrompt = createEnhancementPrompt(elementsToEnhance, config, strategy);
|
||||
|
||||
try {
|
||||
const response = await callLLM('gpt4', enhancementPrompt, {
|
||||
temperature: 0.5 + (config.intensity * 0.3),
|
||||
maxTokens: 3000
|
||||
}, config.csvData?.personality);
|
||||
|
||||
const enhancedResults = parseEnhancementResponse(response, elementsToEnhance);
|
||||
|
||||
// Appliquer améliorations
|
||||
Object.keys(enhancedResults).forEach(tag => {
|
||||
if (enhancedResults[tag] !== existingContent[tag]) {
|
||||
results[tag] = enhancedResults[tag];
|
||||
}
|
||||
});
|
||||
|
||||
return results;
|
||||
|
||||
} catch (error) {
|
||||
logSh(`❌ Enhancement échoué: ${error.message}`, 'ERROR');
|
||||
return results; // Fallback: contenu original
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* MÉTHODE HYBRIDE - Combinaison régénération + enhancement
|
||||
*/
|
||||
async function applyHybridMethod(existingContent, config, strategy) {
|
||||
logSh(`⚡ Méthode hybride adversariale`, 'DEBUG');
|
||||
|
||||
// 1. Enhancement léger sur tout le contenu
|
||||
const enhancedContent = await applyEnhancementMethod(existingContent, {
|
||||
...config,
|
||||
intensity: config.intensity * 0.6 // Intensité réduite pour enhancement
|
||||
}, strategy);
|
||||
|
||||
// 2. Régénération ciblée sur éléments clés
|
||||
const keyElements = selectKeyElementsForRegeneration(enhancedContent, config);
|
||||
|
||||
if (keyElements.length === 0) {
|
||||
return enhancedContent;
|
||||
}
|
||||
|
||||
const keyElementsContent = {};
|
||||
keyElements.forEach(tag => {
|
||||
keyElementsContent[tag] = enhancedContent[tag];
|
||||
});
|
||||
|
||||
const regeneratedElements = await applyRegenerationMethod(keyElementsContent, {
|
||||
...config,
|
||||
intensity: config.intensity * 1.2 // Intensité augmentée pour régénération
|
||||
}, strategy);
|
||||
|
||||
// 3. Merger résultats
|
||||
const hybridContent = { ...enhancedContent };
|
||||
Object.keys(regeneratedElements).forEach(tag => {
|
||||
hybridContent[tag] = regeneratedElements[tag];
|
||||
});
|
||||
|
||||
return hybridContent;
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
/**
|
||||
* Créer prompt de régénération adversariale
|
||||
*/
|
||||
function createRegenerationPrompt(chunk, config, strategy) {
|
||||
const { detectorTarget, intensity, csvData } = config;
|
||||
|
||||
let prompt = `MISSION: Réécris ces contenus pour éviter détection par ${detectorTarget}.
|
||||
|
||||
TECHNIQUE ANTI-${detectorTarget.toUpperCase()}:
|
||||
${strategy.getInstructions(intensity).join('\n')}
|
||||
|
||||
CONTENUS À RÉÉCRIRE:
|
||||
|
||||
${chunk.map(([tag, content], i) => `[${i + 1}] TAG: ${tag}
|
||||
ORIGINAL: "${content}"`).join('\n\n')}
|
||||
|
||||
CONSIGNES:
|
||||
- GARDE exactement le même message et informations factuelles
|
||||
- CHANGE structure, vocabulaire, style pour éviter détection ${detectorTarget}
|
||||
- Intensité adversariale: ${intensity.toFixed(2)}
|
||||
${csvData?.personality ? `- Style: ${csvData.personality.nom} (${csvData.personality.style})` : ''}
|
||||
|
||||
IMPORTANT: Réponse DIRECTE par les contenus réécrits, pas d'explication.
|
||||
|
||||
FORMAT:
|
||||
[1] Contenu réécrit anti-${detectorTarget}
|
||||
[2] Contenu réécrit anti-${detectorTarget}
|
||||
etc...`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt d'enhancement adversarial
|
||||
*/
|
||||
function createEnhancementPrompt(elementsToEnhance, config, strategy) {
|
||||
const { detectorTarget, intensity } = config;
|
||||
|
||||
let prompt = `MISSION: Améliore subtilement ces contenus pour réduire détection ${detectorTarget}.
|
||||
|
||||
AMÉLIORATIONS CIBLÉES:
|
||||
${strategy.getEnhancementTips(intensity).join('\n')}
|
||||
|
||||
ÉLÉMENTS À AMÉLIORER:
|
||||
|
||||
${elementsToEnhance.map((element, i) => `[${i + 1}] TAG: ${element.tag}
|
||||
CONTENU: "${element.content}"
|
||||
PROBLÈME: ${element.detectionRisk}`).join('\n\n')}
|
||||
|
||||
CONSIGNES:
|
||||
- Modifications LÉGÈRES et naturelles
|
||||
- GARDE le fond du message intact
|
||||
- Focus sur réduction détection ${detectorTarget}
|
||||
- Intensité: ${intensity.toFixed(2)}
|
||||
|
||||
FORMAT:
|
||||
[1] Contenu légèrement amélioré
|
||||
[2] Contenu légèrement amélioré
|
||||
etc...`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse régénération
|
||||
*/
|
||||
function parseRegenerationResponse(response, chunk) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\n\[\d+\]|$)/gs;
|
||||
let match;
|
||||
const parsedItems = {};
|
||||
|
||||
while ((match = regex.exec(response)) !== null) {
|
||||
const index = parseInt(match[1]) - 1;
|
||||
const content = cleanAdversarialContent(match[2].trim());
|
||||
if (index >= 0 && index < chunk.length) {
|
||||
parsedItems[index] = content;
|
||||
}
|
||||
}
|
||||
|
||||
// Mapper aux vrais tags
|
||||
chunk.forEach(([tag, originalContent], index) => {
|
||||
if (parsedItems[index] && parsedItems[index].length > 10) {
|
||||
results[tag] = parsedItems[index];
|
||||
} else {
|
||||
results[tag] = originalContent; // Fallback
|
||||
logSh(`⚠️ Fallback régénération pour [${tag}]`, 'WARNING');
|
||||
}
|
||||
});
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse enhancement
|
||||
*/
|
||||
function parseEnhancementResponse(response, elementsToEnhance) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\n\[\d+\]|$)/gs;
|
||||
let match;
|
||||
let index = 0;
|
||||
|
||||
while ((match = regex.exec(response)) && index < elementsToEnhance.length) {
|
||||
let enhancedContent = cleanAdversarialContent(match[2].trim());
|
||||
const element = elementsToEnhance[index];
|
||||
|
||||
if (enhancedContent && enhancedContent.length > 10) {
|
||||
results[element.tag] = enhancedContent;
|
||||
} else {
|
||||
results[element.tag] = element.content; // Fallback
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sélectionner éléments pour enhancement
|
||||
*/
|
||||
function selectElementsForEnhancement(existingContent, config) {
|
||||
const elements = [];
|
||||
|
||||
Object.entries(existingContent).forEach(([tag, content]) => {
|
||||
const detectionRisk = assessDetectionRisk(content, config.detectorTarget);
|
||||
|
||||
if (detectionRisk.score > 0.6) { // Risque élevé
|
||||
elements.push({
|
||||
tag,
|
||||
content,
|
||||
detectionRisk: detectionRisk.reasons.join(', '),
|
||||
priority: detectionRisk.score
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
// Trier par priorité (risque élevé en premier)
|
||||
elements.sort((a, b) => b.priority - a.priority);
|
||||
|
||||
return elements;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sélectionner éléments clés pour régénération (hybride)
|
||||
*/
|
||||
function selectKeyElementsForRegeneration(content, config) {
|
||||
const keyTags = [];
|
||||
|
||||
Object.keys(content).forEach(tag => {
|
||||
// Éléments clés: titres, intro, premiers paragraphes
|
||||
if (tag.includes('Titre') || tag.includes('H1') || tag.includes('intro') ||
|
||||
tag.includes('Introduction') || tag.includes('1')) {
|
||||
keyTags.push(tag);
|
||||
}
|
||||
});
|
||||
|
||||
return keyTags.slice(0, 3); // Maximum 3 éléments clés
|
||||
}
|
||||
|
||||
/**
|
||||
* Évaluer risque de détection
|
||||
*/
|
||||
function assessDetectionRisk(content, detectorTarget) {
|
||||
let score = 0;
|
||||
const reasons = [];
|
||||
|
||||
// Indicateurs génériques de contenu IA
|
||||
const aiWords = ['optimal', 'comprehensive', 'seamless', 'robust', 'leverage', 'cutting-edge'];
|
||||
const aiCount = aiWords.reduce((count, word) => {
|
||||
return count + (content.toLowerCase().includes(word) ? 1 : 0);
|
||||
}, 0);
|
||||
|
||||
if (aiCount > 2) {
|
||||
score += 0.4;
|
||||
reasons.push('mots_typiques_ia');
|
||||
}
|
||||
|
||||
// Structure trop parfaite
|
||||
const sentences = content.split(/[.!?]+/).filter(s => s.trim().length > 10);
|
||||
if (sentences.length > 2) {
|
||||
const avgLength = sentences.reduce((sum, s) => sum + s.length, 0) / sentences.length;
|
||||
const variance = sentences.reduce((sum, s) => sum + Math.pow(s.length - avgLength, 2), 0) / sentences.length;
|
||||
const uniformity = 1 - (Math.sqrt(variance) / avgLength);
|
||||
|
||||
if (uniformity > 0.8) {
|
||||
score += 0.3;
|
||||
reasons.push('structure_uniforme');
|
||||
}
|
||||
}
|
||||
|
||||
// Spécifique selon détecteur
|
||||
if (detectorTarget === 'gptZero') {
|
||||
// GPTZero détecte la prévisibilité
|
||||
if (content.includes('par ailleurs') && content.includes('en effet')) {
|
||||
score += 0.3;
|
||||
reasons.push('connecteurs_prévisibles');
|
||||
}
|
||||
}
|
||||
|
||||
return { score: Math.min(1, score), reasons };
|
||||
}
|
||||
|
||||
/**
|
||||
* Nettoyer contenu adversarial généré
|
||||
*/
|
||||
function cleanAdversarialContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
// Supprimer préfixes indésirables
|
||||
content = content.replace(/^(voici\s+)?le\s+contenu\s+(réécrit|amélioré)[:\s]*/gi, '');
|
||||
content = content.replace(/^(bon,?\s*)?(alors,?\s*)?/gi, '');
|
||||
content = content.replace(/\*\*[^*]+\*\*/g, '');
|
||||
content = content.replace(/\s{2,}/g, ' ');
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compter éléments modifiés
|
||||
*/
|
||||
function countModifiedElements(original, modified) {
|
||||
let count = 0;
|
||||
|
||||
Object.keys(original).forEach(tag => {
|
||||
if (modified[tag] && modified[tag] !== original[tag]) {
|
||||
count++;
|
||||
}
|
||||
});
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
/**
|
||||
* Chunk array utility
|
||||
*/
|
||||
function chunkArray(array, size) {
|
||||
const chunks = [];
|
||||
for (let i = 0; i < array.length; i += size) {
|
||||
chunks.push(array.slice(i, i + size));
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sleep utility
|
||||
*/
|
||||
function sleep(ms) {
|
||||
return new Promise(resolve => setTimeout(resolve, ms));
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
applyAdversarialLayer, // ← MAIN ENTRY POINT MODULAIRE
|
||||
applyRegenerationMethod,
|
||||
applyEnhancementMethod,
|
||||
applyHybridMethod,
|
||||
assessDetectionRisk,
|
||||
selectElementsForEnhancement
|
||||
};
|
||||
448
lib/adversarial-generation/AdversarialInitialGeneration.js
Normal file
448
lib/adversarial-generation/AdversarialInitialGeneration.js
Normal file
@ -0,0 +1,448 @@
|
||||
// ========================================
|
||||
// ÉTAPE 1: GÉNÉRATION INITIALE ADVERSARIALE
|
||||
// Responsabilité: Créer le contenu de base avec Claude + anti-détection
|
||||
// LLM: Claude Sonnet (température 0.7) + Prompts adversariaux
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
const { createAdversarialPrompt } = require('./AdversarialPromptEngine');
|
||||
const { DetectorStrategyManager } = require('./DetectorStrategies');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - GÉNÉRATION INITIALE ADVERSARIALE
|
||||
* Input: { content: {}, csvData: {}, context: {}, adversarialConfig: {} }
|
||||
* Output: { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function generateInitialContentAdversarial(input) {
|
||||
return await tracer.run('AdversarialInitialGeneration.generateInitialContentAdversarial()', async () => {
|
||||
const { hierarchy, csvData, context = {}, adversarialConfig = {} } = input;
|
||||
|
||||
// Configuration adversariale par défaut
|
||||
const config = {
|
||||
detectorTarget: adversarialConfig.detectorTarget || 'general',
|
||||
intensity: adversarialConfig.intensity || 1.0,
|
||||
enableAdaptiveStrategy: adversarialConfig.enableAdaptiveStrategy || true,
|
||||
contextualMode: adversarialConfig.contextualMode !== false,
|
||||
...adversarialConfig
|
||||
};
|
||||
|
||||
// Initialiser manager détecteur
|
||||
const detectorManager = new DetectorStrategyManager(config.detectorTarget);
|
||||
|
||||
await tracer.annotate({
|
||||
step: '1/4',
|
||||
llmProvider: 'claude',
|
||||
elementsCount: Object.keys(hierarchy).length,
|
||||
mc0: csvData.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🎯 ÉTAPE 1/4 ADVERSARIAL: Génération initiale (Claude + ${config.detectorTarget})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(hierarchy).length} éléments à générer`, 'INFO');
|
||||
|
||||
try {
|
||||
// Collecter tous les éléments dans l'ordre XML
|
||||
const allElements = collectElementsInXMLOrder(hierarchy);
|
||||
|
||||
// Séparer FAQ pairs et autres éléments
|
||||
const { faqPairs, otherElements } = separateElementTypes(allElements);
|
||||
|
||||
// Générer en chunks pour éviter timeouts
|
||||
const results = {};
|
||||
|
||||
// 1. Générer éléments normaux avec prompts adversariaux
|
||||
if (otherElements.length > 0) {
|
||||
const normalResults = await generateNormalElementsAdversarial(otherElements, csvData, config, detectorManager);
|
||||
Object.assign(results, normalResults);
|
||||
}
|
||||
|
||||
// 2. Générer paires FAQ adversariales si présentes
|
||||
if (faqPairs.length > 0) {
|
||||
const faqResults = await generateFAQPairsAdversarial(faqPairs, csvData, config, detectorManager);
|
||||
Object.assign(results, faqResults);
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: Object.keys(results).length,
|
||||
generated: Object.keys(results).length,
|
||||
faqPairs: faqPairs.length,
|
||||
duration
|
||||
};
|
||||
|
||||
logSh(`✅ ÉTAPE 1/4 TERMINÉE: ${stats.generated} éléments générés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event(`Génération initiale terminée`, stats);
|
||||
|
||||
return {
|
||||
content: results,
|
||||
stats,
|
||||
debug: {
|
||||
llmProvider: 'claude',
|
||||
step: 1,
|
||||
elementsGenerated: Object.keys(results),
|
||||
adversarialConfig: config,
|
||||
detectorTarget: config.detectorTarget,
|
||||
intensity: config.intensity
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ ÉTAPE 1/4 ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
throw new Error(`InitialGeneration failed: ${error.message}`);
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Générer éléments normaux avec prompts adversariaux en chunks
|
||||
*/
|
||||
async function generateNormalElementsAdversarial(elements, csvData, adversarialConfig, detectorManager) {
|
||||
logSh(`🎯 Génération éléments normaux adversariaux: ${elements.length} éléments`, 'DEBUG');
|
||||
|
||||
const results = {};
|
||||
const chunks = chunkArray(elements, 4); // Chunks de 4 pour éviter timeouts
|
||||
|
||||
for (let chunkIndex = 0; chunkIndex < chunks.length; chunkIndex++) {
|
||||
const chunk = chunks[chunkIndex];
|
||||
logSh(` 📦 Chunk ${chunkIndex + 1}/${chunks.length}: ${chunk.length} éléments`, 'DEBUG');
|
||||
|
||||
try {
|
||||
const basePrompt = createBatchPrompt(chunk, csvData);
|
||||
|
||||
// Générer prompt adversarial
|
||||
const adversarialPrompt = createAdversarialPrompt(basePrompt, {
|
||||
detectorTarget: adversarialConfig.detectorTarget,
|
||||
intensity: adversarialConfig.intensity,
|
||||
elementType: getElementTypeFromChunk(chunk),
|
||||
personality: csvData.personality,
|
||||
contextualMode: adversarialConfig.contextualMode,
|
||||
csvData: csvData,
|
||||
debugMode: false
|
||||
});
|
||||
|
||||
const response = await callLLM('claude', adversarialPrompt, {
|
||||
temperature: 0.7,
|
||||
maxTokens: 2000 * chunk.length
|
||||
}, csvData.personality);
|
||||
|
||||
const chunkResults = parseBatchResponse(response, chunk);
|
||||
Object.assign(results, chunkResults);
|
||||
|
||||
logSh(` ✅ Chunk ${chunkIndex + 1}: ${Object.keys(chunkResults).length} éléments générés`, 'DEBUG');
|
||||
|
||||
// Délai entre chunks
|
||||
if (chunkIndex < chunks.length - 1) {
|
||||
await sleep(1500);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Chunk ${chunkIndex + 1} échoué: ${error.message}`, 'ERROR');
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Générer paires FAQ adversariales cohérentes
|
||||
*/
|
||||
async function generateFAQPairsAdversarial(faqPairs, csvData, adversarialConfig, detectorManager) {
|
||||
logSh(`🎯 Génération paires FAQ adversariales: ${faqPairs.length} paires`, 'DEBUG');
|
||||
|
||||
const basePrompt = createFAQPairsPrompt(faqPairs, csvData);
|
||||
|
||||
// Générer prompt adversarial spécialisé FAQ
|
||||
const adversarialPrompt = createAdversarialPrompt(basePrompt, {
|
||||
detectorTarget: adversarialConfig.detectorTarget,
|
||||
intensity: adversarialConfig.intensity * 1.1, // Intensité légèrement plus élevée pour FAQ
|
||||
elementType: 'faq_mixed',
|
||||
personality: csvData.personality,
|
||||
contextualMode: adversarialConfig.contextualMode,
|
||||
csvData: csvData,
|
||||
debugMode: false
|
||||
});
|
||||
|
||||
const response = await callLLM('claude', adversarialPrompt, {
|
||||
temperature: 0.8,
|
||||
maxTokens: 3000
|
||||
}, csvData.personality);
|
||||
|
||||
return parseFAQResponse(response, faqPairs);
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt batch pour éléments normaux
|
||||
*/
|
||||
function createBatchPrompt(elements, csvData) {
|
||||
const personality = csvData.personality;
|
||||
|
||||
let prompt = `=== GÉNÉRATION CONTENU INITIAL ===
|
||||
Entreprise: Autocollant.fr - signalétique personnalisée
|
||||
Sujet: ${csvData.mc0}
|
||||
Rédacteur: ${personality.nom} (${personality.style})
|
||||
|
||||
ÉLÉMENTS À GÉNÉRER:
|
||||
|
||||
`;
|
||||
|
||||
elements.forEach((elementInfo, index) => {
|
||||
const cleanTag = elementInfo.tag.replace(/\|/g, '');
|
||||
prompt += `${index + 1}. [${cleanTag}] - ${getElementDescription(elementInfo)}\n`;
|
||||
});
|
||||
|
||||
prompt += `
|
||||
STYLE ${personality.nom.toUpperCase()}:
|
||||
- Vocabulaire: ${personality.vocabulairePref}
|
||||
- Phrases: ${personality.longueurPhrases}
|
||||
- Niveau: ${personality.niveauTechnique}
|
||||
|
||||
CONSIGNES:
|
||||
- Contenu SEO optimisé pour ${csvData.mc0}
|
||||
- Style ${personality.style} naturel
|
||||
- Pas de références techniques dans contenu
|
||||
- RÉPONSE DIRECTE par le contenu
|
||||
|
||||
FORMAT:
|
||||
[${elements[0].tag.replace(/\|/g, '')}]
|
||||
Contenu généré...
|
||||
|
||||
[${elements[1] ? elements[1].tag.replace(/\|/g, '') : 'element2'}]
|
||||
Contenu généré...`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse batch
|
||||
*/
|
||||
function parseBatchResponse(response, elements) {
|
||||
const results = {};
|
||||
const regex = /\[([^\]]+)\]\s*([^[]*?)(?=\n\[|$)/gs;
|
||||
let match;
|
||||
const parsedItems = {};
|
||||
|
||||
while ((match = regex.exec(response)) !== null) {
|
||||
const tag = match[1].trim();
|
||||
const content = cleanGeneratedContent(match[2].trim());
|
||||
parsedItems[tag] = content;
|
||||
}
|
||||
|
||||
// Mapper aux vrais tags
|
||||
elements.forEach(element => {
|
||||
const cleanTag = element.tag.replace(/\|/g, '');
|
||||
if (parsedItems[cleanTag] && parsedItems[cleanTag].length > 10) {
|
||||
results[element.tag] = parsedItems[cleanTag];
|
||||
} else {
|
||||
results[element.tag] = `Contenu professionnel pour ${element.element.name || cleanTag}`;
|
||||
logSh(`⚠️ Fallback pour [${cleanTag}]`, 'WARNING');
|
||||
}
|
||||
});
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt pour paires FAQ
|
||||
*/
|
||||
function createFAQPairsPrompt(faqPairs, csvData) {
|
||||
const personality = csvData.personality;
|
||||
|
||||
let prompt = `=== GÉNÉRATION PAIRES FAQ ===
|
||||
Sujet: ${csvData.mc0}
|
||||
Rédacteur: ${personality.nom} (${personality.style})
|
||||
|
||||
PAIRES À GÉNÉRER:
|
||||
`;
|
||||
|
||||
faqPairs.forEach((pair, index) => {
|
||||
const qTag = pair.question.tag.replace(/\|/g, '');
|
||||
const aTag = pair.answer.tag.replace(/\|/g, '');
|
||||
prompt += `${index + 1}. [${qTag}] + [${aTag}]\n`;
|
||||
});
|
||||
|
||||
prompt += `
|
||||
CONSIGNES:
|
||||
- Questions naturelles de clients
|
||||
- Réponses expertes ${personality.style}
|
||||
- Couvrir: prix, livraison, personnalisation
|
||||
|
||||
FORMAT:
|
||||
[${faqPairs[0].question.tag.replace(/\|/g, '')}]
|
||||
Question client naturelle ?
|
||||
|
||||
[${faqPairs[0].answer.tag.replace(/\|/g, '')}]
|
||||
Réponse utile et rassurante.`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse FAQ
|
||||
*/
|
||||
function parseFAQResponse(response, faqPairs) {
|
||||
const results = {};
|
||||
const regex = /\[([^\]]+)\]\s*([^[]*?)(?=\n\[|$)/gs;
|
||||
let match;
|
||||
const parsedItems = {};
|
||||
|
||||
while ((match = regex.exec(response)) !== null) {
|
||||
const tag = match[1].trim();
|
||||
const content = cleanGeneratedContent(match[2].trim());
|
||||
parsedItems[tag] = content;
|
||||
}
|
||||
|
||||
// Mapper aux paires FAQ
|
||||
faqPairs.forEach(pair => {
|
||||
const qCleanTag = pair.question.tag.replace(/\|/g, '');
|
||||
const aCleanTag = pair.answer.tag.replace(/\|/g, '');
|
||||
|
||||
if (parsedItems[qCleanTag]) results[pair.question.tag] = parsedItems[qCleanTag];
|
||||
if (parsedItems[aCleanTag]) results[pair.answer.tag] = parsedItems[aCleanTag];
|
||||
});
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
function collectElementsInXMLOrder(hierarchy) {
|
||||
const allElements = [];
|
||||
|
||||
Object.keys(hierarchy).forEach(path => {
|
||||
const section = hierarchy[path];
|
||||
|
||||
if (section.title) {
|
||||
allElements.push({
|
||||
tag: section.title.originalElement.originalTag,
|
||||
element: section.title.originalElement,
|
||||
type: section.title.originalElement.type
|
||||
});
|
||||
}
|
||||
|
||||
if (section.text) {
|
||||
allElements.push({
|
||||
tag: section.text.originalElement.originalTag,
|
||||
element: section.text.originalElement,
|
||||
type: section.text.originalElement.type
|
||||
});
|
||||
}
|
||||
|
||||
section.questions.forEach(q => {
|
||||
allElements.push({
|
||||
tag: q.originalElement.originalTag,
|
||||
element: q.originalElement,
|
||||
type: q.originalElement.type
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
return allElements;
|
||||
}
|
||||
|
||||
function separateElementTypes(allElements) {
|
||||
const faqPairs = [];
|
||||
const otherElements = [];
|
||||
const faqQuestions = {};
|
||||
const faqAnswers = {};
|
||||
|
||||
// Collecter FAQ questions et answers
|
||||
allElements.forEach(element => {
|
||||
if (element.type === 'faq_question') {
|
||||
const numberMatch = element.tag.match(/(\d+)/);
|
||||
const faqNumber = numberMatch ? numberMatch[1] : '1';
|
||||
faqQuestions[faqNumber] = element;
|
||||
} else if (element.type === 'faq_reponse') {
|
||||
const numberMatch = element.tag.match(/(\d+)/);
|
||||
const faqNumber = numberMatch ? numberMatch[1] : '1';
|
||||
faqAnswers[faqNumber] = element;
|
||||
} else {
|
||||
otherElements.push(element);
|
||||
}
|
||||
});
|
||||
|
||||
// Créer paires FAQ
|
||||
Object.keys(faqQuestions).forEach(number => {
|
||||
const question = faqQuestions[number];
|
||||
const answer = faqAnswers[number];
|
||||
|
||||
if (question && answer) {
|
||||
faqPairs.push({ number, question, answer });
|
||||
} else if (question) {
|
||||
otherElements.push(question);
|
||||
} else if (answer) {
|
||||
otherElements.push(answer);
|
||||
}
|
||||
});
|
||||
|
||||
return { faqPairs, otherElements };
|
||||
}
|
||||
|
||||
function getElementDescription(elementInfo) {
|
||||
switch (elementInfo.type) {
|
||||
case 'titre_h1': return 'Titre principal accrocheur';
|
||||
case 'titre_h2': return 'Titre de section';
|
||||
case 'titre_h3': return 'Sous-titre';
|
||||
case 'intro': return 'Introduction engageante';
|
||||
case 'texte': return 'Paragraphe informatif';
|
||||
default: return 'Contenu pertinent';
|
||||
}
|
||||
}
|
||||
|
||||
function cleanGeneratedContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
// Supprimer préfixes indésirables
|
||||
content = content.replace(/^(Bon,?\s*)?(alors,?\s*)?Titre_[HU]\d+_\d+[.,\s]*/gi, '');
|
||||
content = content.replace(/\*\*[^*]+\*\*/g, '');
|
||||
content = content.replace(/\s{2,}/g, ' ');
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
function chunkArray(array, size) {
|
||||
const chunks = [];
|
||||
for (let i = 0; i < array.length; i += size) {
|
||||
chunks.push(array.slice(i, i + size));
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
function sleep(ms) {
|
||||
return new Promise(resolve => setTimeout(resolve, ms));
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper: Déterminer type d'élément dominant dans un chunk
|
||||
*/
|
||||
function getElementTypeFromChunk(chunk) {
|
||||
if (!chunk || chunk.length === 0) return 'generic';
|
||||
|
||||
// Compter les types dans le chunk
|
||||
const typeCounts = {};
|
||||
chunk.forEach(element => {
|
||||
const type = element.type || 'generic';
|
||||
typeCounts[type] = (typeCounts[type] || 0) + 1;
|
||||
});
|
||||
|
||||
// Retourner type le plus fréquent
|
||||
return Object.keys(typeCounts).reduce((a, b) =>
|
||||
typeCounts[a] > typeCounts[b] ? a : b
|
||||
);
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
generateInitialContentAdversarial, // ← MAIN ENTRY POINT ADVERSARIAL
|
||||
generateNormalElementsAdversarial,
|
||||
generateFAQPairsAdversarial,
|
||||
createBatchPrompt,
|
||||
parseBatchResponse,
|
||||
collectElementsInXMLOrder,
|
||||
separateElementTypes,
|
||||
getElementTypeFromChunk
|
||||
};
|
||||
413
lib/adversarial-generation/AdversarialLayers.js
Normal file
413
lib/adversarial-generation/AdversarialLayers.js
Normal file
@ -0,0 +1,413 @@
|
||||
// ========================================
|
||||
// ADVERSARIAL LAYERS - COUCHES MODULAIRES
|
||||
// Responsabilité: Couches adversariales composables et réutilisables
|
||||
// Architecture: Fonction pipeline |> layer1 |> layer2 |> layer3
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
const { applyAdversarialLayer } = require('./AdversarialCore');
|
||||
|
||||
/**
|
||||
* COUCHE ANTI-GPTZEERO - Spécialisée contre GPTZero
|
||||
*/
|
||||
async function applyAntiGPTZeroLayer(content, options = {}) {
|
||||
return await applyAdversarialLayer(content, {
|
||||
detectorTarget: 'gptZero',
|
||||
intensity: options.intensity || 1.0,
|
||||
method: options.method || 'regeneration',
|
||||
...options
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* COUCHE ANTI-ORIGINALITY - Spécialisée contre Originality.ai
|
||||
*/
|
||||
async function applyAntiOriginalityLayer(content, options = {}) {
|
||||
return await applyAdversarialLayer(content, {
|
||||
detectorTarget: 'originality',
|
||||
intensity: options.intensity || 1.1,
|
||||
method: options.method || 'hybrid',
|
||||
...options
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* COUCHE ANTI-WINSTON - Spécialisée contre Winston AI
|
||||
*/
|
||||
async function applyAntiWinstonLayer(content, options = {}) {
|
||||
return await applyAdversarialLayer(content, {
|
||||
detectorTarget: 'winston',
|
||||
intensity: options.intensity || 0.9,
|
||||
method: options.method || 'enhancement',
|
||||
...options
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* COUCHE GÉNÉRALE - Protection généraliste multi-détecteurs
|
||||
*/
|
||||
async function applyGeneralAdversarialLayer(content, options = {}) {
|
||||
return await applyAdversarialLayer(content, {
|
||||
detectorTarget: 'general',
|
||||
intensity: options.intensity || 0.8,
|
||||
method: options.method || 'hybrid',
|
||||
...options
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* COUCHE LÉGÈRE - Modifications subtiles pour préserver qualité
|
||||
*/
|
||||
async function applyLightAdversarialLayer(content, options = {}) {
|
||||
return await applyAdversarialLayer(content, {
|
||||
detectorTarget: options.detectorTarget || 'general',
|
||||
intensity: 0.5,
|
||||
method: 'enhancement',
|
||||
preserveStructure: true,
|
||||
...options
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* COUCHE INTENSIVE - Maximum anti-détection
|
||||
*/
|
||||
async function applyIntensiveAdversarialLayer(content, options = {}) {
|
||||
return await applyAdversarialLayer(content, {
|
||||
detectorTarget: options.detectorTarget || 'gptZero',
|
||||
intensity: 1.5,
|
||||
method: 'regeneration',
|
||||
preserveStructure: false,
|
||||
...options
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* PIPELINE COMPOSABLE - Application séquentielle de couches
|
||||
*/
|
||||
async function applyLayerPipeline(content, layers = [], globalOptions = {}) {
|
||||
return await tracer.run('AdversarialLayers.applyLayerPipeline()', async () => {
|
||||
await tracer.annotate({
|
||||
layersPipeline: true,
|
||||
layersCount: layers.length,
|
||||
elementsCount: Object.keys(content).length
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🔄 PIPELINE COUCHES ADVERSARIALES: ${layers.length} couches`, 'INFO');
|
||||
|
||||
let currentContent = content;
|
||||
const pipelineStats = {
|
||||
layers: [],
|
||||
totalDuration: 0,
|
||||
totalModifications: 0,
|
||||
success: true
|
||||
};
|
||||
|
||||
try {
|
||||
for (let i = 0; i < layers.length; i++) {
|
||||
const layer = layers[i];
|
||||
const layerStartTime = Date.now();
|
||||
|
||||
logSh(` 🎯 Couche ${i + 1}/${layers.length}: ${layer.name || layer.type || 'anonyme'}`, 'DEBUG');
|
||||
|
||||
try {
|
||||
const layerResult = await applyLayerByConfig(currentContent, layer, globalOptions);
|
||||
|
||||
currentContent = layerResult.content;
|
||||
|
||||
const layerStats = {
|
||||
name: layer.name || `layer_${i + 1}`,
|
||||
type: layer.type,
|
||||
duration: Date.now() - layerStartTime,
|
||||
modificationsCount: layerResult.stats?.elementsModified || 0,
|
||||
success: true
|
||||
};
|
||||
|
||||
pipelineStats.layers.push(layerStats);
|
||||
pipelineStats.totalModifications += layerStats.modificationsCount;
|
||||
|
||||
logSh(` ✅ ${layerStats.name}: ${layerStats.modificationsCount} modifs (${layerStats.duration}ms)`, 'DEBUG');
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Couche ${i + 1} échouée: ${error.message}`, 'ERROR');
|
||||
|
||||
pipelineStats.layers.push({
|
||||
name: layer.name || `layer_${i + 1}`,
|
||||
type: layer.type,
|
||||
duration: Date.now() - layerStartTime,
|
||||
success: false,
|
||||
error: error.message
|
||||
});
|
||||
|
||||
// Continuer avec le contenu précédent si une couche échoue
|
||||
if (!globalOptions.stopOnError) {
|
||||
continue;
|
||||
} else {
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pipelineStats.totalDuration = Date.now() - startTime;
|
||||
pipelineStats.success = pipelineStats.layers.every(layer => layer.success);
|
||||
|
||||
logSh(`🔄 PIPELINE TERMINÉ: ${pipelineStats.totalModifications} modifs totales (${pipelineStats.totalDuration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event('Pipeline couches terminé', pipelineStats);
|
||||
|
||||
return {
|
||||
content: currentContent,
|
||||
stats: pipelineStats,
|
||||
original: content
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
pipelineStats.totalDuration = Date.now() - startTime;
|
||||
pipelineStats.success = false;
|
||||
|
||||
logSh(`❌ PIPELINE COUCHES ÉCHOUÉ après ${pipelineStats.totalDuration}ms: ${error.message}`, 'ERROR');
|
||||
throw error;
|
||||
}
|
||||
}, { layers: layers.map(l => l.name || l.type), content: Object.keys(content) });
|
||||
}
|
||||
|
||||
/**
|
||||
* COUCHES PRÉDÉFINIES - Configurations courantes
|
||||
*/
|
||||
const PREDEFINED_LAYERS = {
|
||||
// Stack défensif léger
|
||||
lightDefense: [
|
||||
{ type: 'general', name: 'General Light', intensity: 0.6, method: 'enhancement' },
|
||||
{ type: 'anti-gptZero', name: 'GPTZero Light', intensity: 0.5, method: 'enhancement' }
|
||||
],
|
||||
|
||||
// Stack défensif standard
|
||||
standardDefense: [
|
||||
{ type: 'general', name: 'General Standard', intensity: 0.8, method: 'hybrid' },
|
||||
{ type: 'anti-gptZero', name: 'GPTZero Standard', intensity: 0.9, method: 'enhancement' },
|
||||
{ type: 'anti-originality', name: 'Originality Standard', intensity: 0.8, method: 'enhancement' }
|
||||
],
|
||||
|
||||
// Stack défensif intensif
|
||||
heavyDefense: [
|
||||
{ type: 'general', name: 'General Heavy', intensity: 1.0, method: 'regeneration' },
|
||||
{ type: 'anti-gptZero', name: 'GPTZero Heavy', intensity: 1.2, method: 'regeneration' },
|
||||
{ type: 'anti-originality', name: 'Originality Heavy', intensity: 1.1, method: 'hybrid' },
|
||||
{ type: 'anti-winston', name: 'Winston Heavy', intensity: 1.0, method: 'enhancement' }
|
||||
],
|
||||
|
||||
// Stack ciblé GPTZero
|
||||
gptZeroFocused: [
|
||||
{ type: 'anti-gptZero', name: 'GPTZero Primary', intensity: 1.3, method: 'regeneration' },
|
||||
{ type: 'general', name: 'General Support', intensity: 0.7, method: 'enhancement' }
|
||||
],
|
||||
|
||||
// Stack ciblé Originality
|
||||
originalityFocused: [
|
||||
{ type: 'anti-originality', name: 'Originality Primary', intensity: 1.4, method: 'hybrid' },
|
||||
{ type: 'general', name: 'General Support', intensity: 0.8, method: 'enhancement' }
|
||||
]
|
||||
};
|
||||
|
||||
/**
|
||||
* APPLIQUER STACK PRÉDÉFINI
|
||||
*/
|
||||
async function applyPredefinedStack(content, stackName, options = {}) {
|
||||
const stack = PREDEFINED_LAYERS[stackName];
|
||||
|
||||
if (!stack) {
|
||||
throw new Error(`Stack prédéfini inconnu: ${stackName}. Disponibles: ${Object.keys(PREDEFINED_LAYERS).join(', ')}`);
|
||||
}
|
||||
|
||||
logSh(`📦 APPLICATION STACK PRÉDÉFINI: ${stackName}`, 'INFO');
|
||||
|
||||
return await applyLayerPipeline(content, stack, options);
|
||||
}
|
||||
|
||||
/**
|
||||
* COUCHES ADAPTATIVES - S'adaptent selon le contenu
|
||||
*/
|
||||
async function applyAdaptiveLayers(content, options = {}) {
|
||||
const {
|
||||
targetDetectors = ['gptZero', 'originality'],
|
||||
maxIntensity = 1.0,
|
||||
analysisMode = true
|
||||
} = options;
|
||||
|
||||
logSh(`🧠 COUCHES ADAPTATIVES: Analyse + adaptation auto`, 'INFO');
|
||||
|
||||
// 1. Analyser le contenu pour détecter les risques
|
||||
const contentAnalysis = analyzeContentRisks(content);
|
||||
|
||||
// 2. Construire pipeline adaptatif selon l'analyse
|
||||
const adaptiveLayers = [];
|
||||
|
||||
// Niveau de base selon risque global
|
||||
const baseIntensity = Math.min(maxIntensity, contentAnalysis.globalRisk * 1.2);
|
||||
|
||||
if (baseIntensity > 0.3) {
|
||||
adaptiveLayers.push({
|
||||
type: 'general',
|
||||
name: 'Adaptive Base',
|
||||
intensity: baseIntensity,
|
||||
method: baseIntensity > 0.7 ? 'hybrid' : 'enhancement'
|
||||
});
|
||||
}
|
||||
|
||||
// Couches spécifiques selon détecteurs ciblés
|
||||
targetDetectors.forEach(detector => {
|
||||
const detectorRisk = contentAnalysis.detectorRisks[detector] || 0;
|
||||
|
||||
if (detectorRisk > 0.4) {
|
||||
const intensity = Math.min(maxIntensity * 1.1, detectorRisk * 1.5);
|
||||
adaptiveLayers.push({
|
||||
type: `anti-${detector}`,
|
||||
name: `Adaptive ${detector}`,
|
||||
intensity,
|
||||
method: intensity > 0.8 ? 'regeneration' : 'enhancement'
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
logSh(` 🎯 ${adaptiveLayers.length} couches adaptatives générées`, 'DEBUG');
|
||||
|
||||
if (adaptiveLayers.length === 0) {
|
||||
logSh(` ✅ Contenu déjà optimal, aucune couche nécessaire`, 'INFO');
|
||||
return { content, stats: { adaptive: true, layersApplied: 0 }, original: content };
|
||||
}
|
||||
|
||||
return await applyLayerPipeline(content, adaptiveLayers, options);
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
/**
|
||||
* Appliquer couche selon configuration
|
||||
*/
|
||||
async function applyLayerByConfig(content, layerConfig, globalOptions = {}) {
|
||||
const { type, intensity, method, ...layerOptions } = layerConfig;
|
||||
const options = { ...globalOptions, ...layerOptions, intensity, method };
|
||||
|
||||
switch (type) {
|
||||
case 'general':
|
||||
return await applyGeneralAdversarialLayer(content, options);
|
||||
case 'anti-gptZero':
|
||||
return await applyAntiGPTZeroLayer(content, options);
|
||||
case 'anti-originality':
|
||||
return await applyAntiOriginalityLayer(content, options);
|
||||
case 'anti-winston':
|
||||
return await applyAntiWinstonLayer(content, options);
|
||||
case 'light':
|
||||
return await applyLightAdversarialLayer(content, options);
|
||||
case 'intensive':
|
||||
return await applyIntensiveAdversarialLayer(content, options);
|
||||
default:
|
||||
throw new Error(`Type de couche inconnu: ${type}`);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser risques du contenu pour adaptation
|
||||
*/
|
||||
function analyzeContentRisks(content) {
|
||||
const analysis = {
|
||||
globalRisk: 0,
|
||||
detectorRisks: {},
|
||||
riskFactors: []
|
||||
};
|
||||
|
||||
const allContent = Object.values(content).join(' ');
|
||||
|
||||
// Risques génériques
|
||||
let riskScore = 0;
|
||||
|
||||
// 1. Mots typiques IA
|
||||
const aiWords = ['optimal', 'comprehensive', 'seamless', 'robust', 'leverage', 'cutting-edge', 'furthermore', 'moreover'];
|
||||
const aiWordCount = aiWords.filter(word => allContent.toLowerCase().includes(word)).length;
|
||||
|
||||
if (aiWordCount > 2) {
|
||||
riskScore += 0.3;
|
||||
analysis.riskFactors.push(`mots_ia: ${aiWordCount}`);
|
||||
}
|
||||
|
||||
// 2. Structure uniforme
|
||||
const contentLengths = Object.values(content).map(c => c.length);
|
||||
const avgLength = contentLengths.reduce((a, b) => a + b, 0) / contentLengths.length;
|
||||
const variance = contentLengths.reduce((sum, len) => sum + Math.pow(len - avgLength, 2), 0) / contentLengths.length;
|
||||
const uniformity = 1 - (Math.sqrt(variance) / Math.max(avgLength, 1));
|
||||
|
||||
if (uniformity > 0.8) {
|
||||
riskScore += 0.2;
|
||||
analysis.riskFactors.push(`uniformité: ${uniformity.toFixed(2)}`);
|
||||
}
|
||||
|
||||
// 3. Connecteurs répétitifs
|
||||
const repetitiveConnectors = ['par ailleurs', 'en effet', 'de plus', 'cependant'];
|
||||
const connectorCount = repetitiveConnectors.filter(conn =>
|
||||
(allContent.match(new RegExp(conn, 'gi')) || []).length > 1
|
||||
).length;
|
||||
|
||||
if (connectorCount > 2) {
|
||||
riskScore += 0.2;
|
||||
analysis.riskFactors.push(`connecteurs_répétitifs: ${connectorCount}`);
|
||||
}
|
||||
|
||||
analysis.globalRisk = Math.min(1, riskScore);
|
||||
|
||||
// Risques spécifiques par détecteur
|
||||
analysis.detectorRisks = {
|
||||
gptZero: analysis.globalRisk + (uniformity > 0.7 ? 0.3 : 0),
|
||||
originality: analysis.globalRisk + (aiWordCount > 3 ? 0.4 : 0),
|
||||
winston: analysis.globalRisk + (connectorCount > 2 ? 0.2 : 0)
|
||||
};
|
||||
|
||||
return analysis;
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir informations sur les stacks disponibles
|
||||
*/
|
||||
function getAvailableStacks() {
|
||||
return Object.keys(PREDEFINED_LAYERS).map(stackName => ({
|
||||
name: stackName,
|
||||
layersCount: PREDEFINED_LAYERS[stackName].length,
|
||||
description: getStackDescription(stackName),
|
||||
layers: PREDEFINED_LAYERS[stackName]
|
||||
}));
|
||||
}
|
||||
|
||||
/**
|
||||
* Description des stacks prédéfinis
|
||||
*/
|
||||
function getStackDescription(stackName) {
|
||||
const descriptions = {
|
||||
lightDefense: 'Protection légère préservant la qualité',
|
||||
standardDefense: 'Protection équilibrée multi-détecteurs',
|
||||
heavyDefense: 'Protection maximale tous détecteurs',
|
||||
gptZeroFocused: 'Optimisation spécifique anti-GPTZero',
|
||||
originalityFocused: 'Optimisation spécifique anti-Originality.ai'
|
||||
};
|
||||
|
||||
return descriptions[stackName] || 'Stack personnalisé';
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
// Couches individuelles
|
||||
applyAntiGPTZeroLayer,
|
||||
applyAntiOriginalityLayer,
|
||||
applyAntiWinstonLayer,
|
||||
applyGeneralAdversarialLayer,
|
||||
applyLightAdversarialLayer,
|
||||
applyIntensiveAdversarialLayer,
|
||||
|
||||
// Pipeline et stacks
|
||||
applyLayerPipeline, // ← MAIN ENTRY POINT PIPELINE
|
||||
applyPredefinedStack, // ← MAIN ENTRY POINT STACKS
|
||||
applyAdaptiveLayers, // ← MAIN ENTRY POINT ADAPTATIF
|
||||
|
||||
// Utilitaires
|
||||
getAvailableStacks,
|
||||
analyzeContentRisks,
|
||||
PREDEFINED_LAYERS
|
||||
};
|
||||
408
lib/adversarial-generation/AdversarialPromptEngine.js
Normal file
408
lib/adversarial-generation/AdversarialPromptEngine.js
Normal file
@ -0,0 +1,408 @@
|
||||
// ========================================
|
||||
// ADVERSARIAL PROMPT ENGINE - NIVEAU 3
|
||||
// Responsabilité: Générer instructions anti-détection pour prompts
|
||||
// Anti-détection: Prévention par modification des prompts LLM
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* INSTRUCTIONS ADVERSARIALES PAR DÉTECTEUR
|
||||
* Stratégies spécialisées pour contrer chaque détecteur IA
|
||||
*/
|
||||
const ADVERSARIAL_INSTRUCTIONS = {
|
||||
general: {
|
||||
title: 'CONTRAINTES ANTI-DÉTECTION GÉNÉRALES',
|
||||
rules: [
|
||||
'Évite ces mots typiques IA : "optimal", "comprehensive", "seamless", "robust", "leverage"',
|
||||
'Varie longueurs phrases : mélange phrases courtes (5-10 mots) ET longues (20-30 mots)',
|
||||
'Utilise expressions françaises familières et tournures idiomatiques',
|
||||
'Ajoute imperfections naturelles : répétitions légères, hésitations, reformulations',
|
||||
'Change angle ou perspective 1-2 fois dans le texte',
|
||||
'Préfère synonymes moins évidents : "bon" plutôt qu\'"excellent", "solide" plutôt qu\'optimisé"',
|
||||
'Intègre connecteurs variés et naturels selon le contexte'
|
||||
],
|
||||
intensity: 1.0,
|
||||
weight: 0.8
|
||||
},
|
||||
|
||||
gptZero: {
|
||||
title: 'SPÉCIAL ANTI-GPTZERO',
|
||||
rules: [
|
||||
'Surprends avec tournures inattendues et constructions atypiques',
|
||||
'Évite phrases trop prévisibles ou patterns répétitifs',
|
||||
'Utilise synonymes moins évidents et vocabulaire moins commun',
|
||||
'Varie drastiquement la complexité syntaxique entre phrases',
|
||||
'Intercale observations personnelles ou détours narratifs',
|
||||
'Alterne registres de langue (soutenu → familier → technique)',
|
||||
'Brise la logique linéaire avec des parenthèses, incises, apartés'
|
||||
],
|
||||
intensity: 1.2,
|
||||
weight: 0.9,
|
||||
targetMetric: 'unpredictability'
|
||||
},
|
||||
|
||||
originality: {
|
||||
title: 'SPÉCIAL ANTI-ORIGINALITY',
|
||||
rules: [
|
||||
'Vocabulaire TRÈS varié : évite répétitions même de synonymes',
|
||||
'Structures phrases délibérément irrégulières et asymétriques',
|
||||
'Changements angles fréquents : technique → personnel → général',
|
||||
'Créativité sémantique : métaphores, comparaisons inattendues',
|
||||
'Évite formulations académiques ou trop structurées',
|
||||
'Intègre références culturelles, expressions régionales',
|
||||
'Subvertis les attentes : commence par la fin, questionne l\'évidence'
|
||||
],
|
||||
intensity: 1.3,
|
||||
weight: 0.95,
|
||||
targetMetric: 'semantic_diversity'
|
||||
},
|
||||
|
||||
copyLeaks: {
|
||||
title: 'SPÉCIAL ANTI-COPYLEAKS',
|
||||
rules: [
|
||||
'Reformule idées communes avec angles totalement originaux',
|
||||
'Évite phrases-types et formulations standard du secteur',
|
||||
'Personnalise chaque assertion avec exemples spécifiques',
|
||||
'Réinvente la façon de présenter informations basiques',
|
||||
'Utilise analogies et métaphores plutôt que descriptions directes',
|
||||
'Fragmente informations techniques en observations pratiques',
|
||||
'Transforme données factuelles en récits ou témoignages'
|
||||
],
|
||||
intensity: 1.1,
|
||||
weight: 0.85,
|
||||
targetMetric: 'originality_score'
|
||||
},
|
||||
|
||||
winston: {
|
||||
title: 'SPÉCIAL ANTI-WINSTON',
|
||||
rules: [
|
||||
'Évite cohérence stylistique trop parfaite entre paragraphes',
|
||||
'Simule variation naturelle d\'humeur et d\'énergie rédactionnelle',
|
||||
'Intègre "erreurs" humaines : répétitions, corrections, précisions',
|
||||
'Varie niveau de détail : parfois précis, parfois elliptique',
|
||||
'Alterne registres émotionnels : enthousiaste → neutre → critique',
|
||||
'Inclus hésitations et nuances : "peut-être", "généralement", "souvent"',
|
||||
'Personnalise avec opinions subjectives et préférences'
|
||||
],
|
||||
intensity: 1.0,
|
||||
weight: 0.9,
|
||||
targetMetric: 'human_variation'
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* INSTRUCTIONS PERSONNALISÉES PAR TYPE D'ÉLÉMENT
|
||||
*/
|
||||
const ELEMENT_SPECIFIC_INSTRUCTIONS = {
|
||||
titre_h1: {
|
||||
base: 'Crée un titre percutant mais naturel',
|
||||
adversarial: 'Évite formules marketing lisses, préfère authentique et direct'
|
||||
},
|
||||
titre_h2: {
|
||||
base: 'Génère un sous-titre informatif',
|
||||
adversarial: 'Varie structure : question, affirmation, exclamation selon contexte'
|
||||
},
|
||||
intro: {
|
||||
base: 'Rédige introduction engageante',
|
||||
adversarial: 'Commence par angle inattendu : anecdote, constat, question rhétorique'
|
||||
},
|
||||
texte: {
|
||||
base: 'Développe paragraphe informatif',
|
||||
adversarial: 'Mélange informations factuelles et observations personnelles'
|
||||
},
|
||||
faq_question: {
|
||||
base: 'Formule question client naturelle',
|
||||
adversarial: 'Utilise formulations vraiment utilisées par clients, pas académiques'
|
||||
},
|
||||
faq_reponse: {
|
||||
base: 'Réponds de façon experte et rassurante',
|
||||
adversarial: 'Ajoute nuances, "ça dépend", précisions contextuelles comme humain'
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - GÉNÉRATEUR DE PROMPTS ADVERSARIAUX
|
||||
* @param {string} basePrompt - Prompt de base
|
||||
* @param {Object} config - Configuration adversariale
|
||||
* @returns {string} - Prompt enrichi d'instructions anti-détection
|
||||
*/
|
||||
function createAdversarialPrompt(basePrompt, config = {}) {
|
||||
return tracer.run('AdversarialPromptEngine.createAdversarialPrompt()', () => {
|
||||
const {
|
||||
detectorTarget = 'general',
|
||||
intensity = 1.0,
|
||||
elementType = 'generic',
|
||||
personality = null,
|
||||
contextualMode = true,
|
||||
csvData = null,
|
||||
debugMode = false
|
||||
} = config;
|
||||
|
||||
tracer.annotate({
|
||||
detectorTarget,
|
||||
intensity,
|
||||
elementType,
|
||||
personalityStyle: personality?.style
|
||||
});
|
||||
|
||||
try {
|
||||
// 1. Sélectionner stratégie détecteur
|
||||
const strategy = ADVERSARIAL_INSTRUCTIONS[detectorTarget] || ADVERSARIAL_INSTRUCTIONS.general;
|
||||
|
||||
// 2. Adapter intensité
|
||||
const effectiveIntensity = intensity * (strategy.intensity || 1.0);
|
||||
const shouldApplyStrategy = Math.random() < (strategy.weight || 0.8);
|
||||
|
||||
if (!shouldApplyStrategy && detectorTarget !== 'general') {
|
||||
// Fallback sur stratégie générale
|
||||
return createAdversarialPrompt(basePrompt, { ...config, detectorTarget: 'general' });
|
||||
}
|
||||
|
||||
// 3. Construire instructions adversariales
|
||||
const adversarialSection = buildAdversarialInstructions(strategy, {
|
||||
elementType,
|
||||
personality,
|
||||
effectiveIntensity,
|
||||
contextualMode,
|
||||
csvData
|
||||
});
|
||||
|
||||
// 4. Assembler prompt final
|
||||
const enhancedPrompt = assembleEnhancedPrompt(basePrompt, adversarialSection, {
|
||||
strategy,
|
||||
elementType,
|
||||
debugMode
|
||||
});
|
||||
|
||||
if (debugMode) {
|
||||
logSh(`🎯 Prompt adversarial généré: ${detectorTarget} (intensité: ${effectiveIntensity.toFixed(2)})`, 'DEBUG');
|
||||
logSh(` Instructions: ${strategy.rules.length} règles appliquées`, 'DEBUG');
|
||||
}
|
||||
|
||||
tracer.event('Prompt adversarial créé', {
|
||||
detectorTarget,
|
||||
rulesCount: strategy.rules.length,
|
||||
promptLength: enhancedPrompt.length
|
||||
});
|
||||
|
||||
return enhancedPrompt;
|
||||
|
||||
} catch (error) {
|
||||
logSh(`❌ Erreur génération prompt adversarial: ${error.message}`, 'ERROR');
|
||||
// Fallback: retourner prompt original
|
||||
return basePrompt;
|
||||
}
|
||||
}, config);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construire section instructions adversariales
|
||||
*/
|
||||
function buildAdversarialInstructions(strategy, config) {
|
||||
const { elementType, personality, effectiveIntensity, contextualMode, csvData } = config;
|
||||
|
||||
let instructions = `\n\n=== ${strategy.title} ===\n`;
|
||||
|
||||
// Règles de base de la stratégie
|
||||
const activeRules = selectActiveRules(strategy.rules, effectiveIntensity);
|
||||
activeRules.forEach(rule => {
|
||||
instructions += `• ${rule}\n`;
|
||||
});
|
||||
|
||||
// Instructions spécifiques au type d'élément
|
||||
if (ELEMENT_SPECIFIC_INSTRUCTIONS[elementType]) {
|
||||
const elementInstructions = ELEMENT_SPECIFIC_INSTRUCTIONS[elementType];
|
||||
instructions += `\nSPÉCIFIQUE ${elementType.toUpperCase()}:\n`;
|
||||
instructions += `• ${elementInstructions.adversarial}\n`;
|
||||
}
|
||||
|
||||
// Adaptations personnalité
|
||||
if (personality && contextualMode) {
|
||||
const personalityAdaptations = generatePersonalityAdaptations(personality, strategy);
|
||||
if (personalityAdaptations) {
|
||||
instructions += `\nADAPTATION PERSONNALITÉ ${personality.nom.toUpperCase()}:\n`;
|
||||
instructions += personalityAdaptations;
|
||||
}
|
||||
}
|
||||
|
||||
// Contexte métier si disponible
|
||||
if (csvData && contextualMode) {
|
||||
const contextualInstructions = generateContextualInstructions(csvData, strategy);
|
||||
if (contextualInstructions) {
|
||||
instructions += `\nCONTEXTE MÉTIER:\n`;
|
||||
instructions += contextualInstructions;
|
||||
}
|
||||
}
|
||||
|
||||
instructions += `\nIMPORTANT: Ces contraintes doivent sembler naturelles, pas forcées.\n`;
|
||||
|
||||
return instructions;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sélectionner règles actives selon intensité
|
||||
*/
|
||||
function selectActiveRules(allRules, intensity) {
|
||||
if (intensity >= 1.0) {
|
||||
return allRules; // Toutes les règles
|
||||
}
|
||||
|
||||
// Sélection proportionnelle à l'intensité
|
||||
const ruleCount = Math.ceil(allRules.length * intensity);
|
||||
return allRules.slice(0, ruleCount);
|
||||
}
|
||||
|
||||
/**
|
||||
* Générer adaptations personnalité
|
||||
*/
|
||||
function generatePersonalityAdaptations(personality, strategy) {
|
||||
if (!personality) return null;
|
||||
|
||||
const adaptations = [];
|
||||
|
||||
// Style de la personnalité
|
||||
if (personality.style) {
|
||||
adaptations.push(`• Respecte le style ${personality.style} de ${personality.nom} tout en appliquant les contraintes`);
|
||||
}
|
||||
|
||||
// Vocabulaire préféré
|
||||
if (personality.vocabulairePref) {
|
||||
adaptations.push(`• Intègre vocabulaire naturel: ${personality.vocabulairePref}`);
|
||||
}
|
||||
|
||||
// Connecteurs préférés
|
||||
if (personality.connecteursPref) {
|
||||
adaptations.push(`• Utilise connecteurs variés: ${personality.connecteursPref}`);
|
||||
}
|
||||
|
||||
// Longueur phrases selon personnalité
|
||||
if (personality.longueurPhrases) {
|
||||
adaptations.push(`• Longueur phrases: ${personality.longueurPhrases} mais avec variation anti-détection`);
|
||||
}
|
||||
|
||||
return adaptations.length > 0 ? adaptations.join('\n') + '\n' : null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Générer instructions contextuelles métier
|
||||
*/
|
||||
function generateContextualInstructions(csvData, strategy) {
|
||||
if (!csvData.mc0) return null;
|
||||
|
||||
const instructions = [];
|
||||
|
||||
// Contexte sujet
|
||||
instructions.push(`• Sujet: ${csvData.mc0} - utilise terminologie naturelle du domaine`);
|
||||
|
||||
// Éviter jargon selon détecteur
|
||||
if (strategy.targetMetric === 'unpredictability') {
|
||||
instructions.push(`• Évite jargon technique trop prévisible, privilégie explications accessibles`);
|
||||
} else if (strategy.targetMetric === 'semantic_diversity') {
|
||||
instructions.push(`• Varie façons de nommer/décrire ${csvData.mc0} - synonymes créatifs`);
|
||||
}
|
||||
|
||||
return instructions.join('\n') + '\n';
|
||||
}
|
||||
|
||||
/**
|
||||
* Assembler prompt final
|
||||
*/
|
||||
function assembleEnhancedPrompt(basePrompt, adversarialSection, config) {
|
||||
const { strategy, elementType, debugMode } = config;
|
||||
|
||||
// Structure du prompt amélioré
|
||||
let enhancedPrompt = basePrompt;
|
||||
|
||||
// Injecter instructions adversariales
|
||||
enhancedPrompt += adversarialSection;
|
||||
|
||||
// Rappel final selon stratégie
|
||||
if (strategy.targetMetric) {
|
||||
enhancedPrompt += `\nOBJECTIF PRIORITAIRE: Maximiser ${strategy.targetMetric} tout en conservant qualité.\n`;
|
||||
}
|
||||
|
||||
// Instructions de réponse
|
||||
enhancedPrompt += `\nRÉPONDS DIRECTEMENT par le contenu demandé, en appliquant naturellement ces contraintes.`;
|
||||
|
||||
return enhancedPrompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser efficacité d'un prompt adversarial
|
||||
*/
|
||||
function analyzePromptEffectiveness(originalPrompt, adversarialPrompt, generatedContent) {
|
||||
const analysis = {
|
||||
promptEnhancement: {
|
||||
originalLength: originalPrompt.length,
|
||||
adversarialLength: adversarialPrompt.length,
|
||||
enhancementRatio: adversarialPrompt.length / originalPrompt.length,
|
||||
instructionsAdded: (adversarialPrompt.match(/•/g) || []).length
|
||||
},
|
||||
contentMetrics: analyzeGeneratedContent(generatedContent),
|
||||
effectiveness: 0
|
||||
};
|
||||
|
||||
// Score d'efficacité simple
|
||||
analysis.effectiveness = Math.min(100,
|
||||
(analysis.promptEnhancement.enhancementRatio - 1) * 50 +
|
||||
analysis.contentMetrics.diversityScore
|
||||
);
|
||||
|
||||
return analysis;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser contenu généré
|
||||
*/
|
||||
function analyzeGeneratedContent(content) {
|
||||
if (!content || typeof content !== 'string') {
|
||||
return { diversityScore: 0, wordCount: 0, sentenceVariation: 0 };
|
||||
}
|
||||
|
||||
const words = content.split(/\s+/).filter(w => w.length > 2);
|
||||
const sentences = content.split(/[.!?]+/).filter(s => s.trim().length > 5);
|
||||
|
||||
// Diversité vocabulaire
|
||||
const uniqueWords = [...new Set(words.map(w => w.toLowerCase()))];
|
||||
const diversityScore = uniqueWords.length / Math.max(1, words.length) * 100;
|
||||
|
||||
// Variation longueurs phrases
|
||||
const sentenceLengths = sentences.map(s => s.split(/\s+/).length);
|
||||
const avgLength = sentenceLengths.reduce((a, b) => a + b, 0) / Math.max(1, sentenceLengths.length);
|
||||
const variance = sentenceLengths.reduce((acc, len) => acc + Math.pow(len - avgLength, 2), 0) / Math.max(1, sentenceLengths.length);
|
||||
const sentenceVariation = Math.sqrt(variance) / Math.max(1, avgLength) * 100;
|
||||
|
||||
return {
|
||||
diversityScore: Math.round(diversityScore),
|
||||
wordCount: words.length,
|
||||
sentenceCount: sentences.length,
|
||||
sentenceVariation: Math.round(sentenceVariation),
|
||||
avgSentenceLength: Math.round(avgLength)
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir liste des détecteurs supportés
|
||||
*/
|
||||
function getSupportedDetectors() {
|
||||
return Object.keys(ADVERSARIAL_INSTRUCTIONS).map(key => ({
|
||||
id: key,
|
||||
name: ADVERSARIAL_INSTRUCTIONS[key].title,
|
||||
intensity: ADVERSARIAL_INSTRUCTIONS[key].intensity,
|
||||
weight: ADVERSARIAL_INSTRUCTIONS[key].weight,
|
||||
rulesCount: ADVERSARIAL_INSTRUCTIONS[key].rules.length,
|
||||
targetMetric: ADVERSARIAL_INSTRUCTIONS[key].targetMetric || 'general'
|
||||
}));
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
createAdversarialPrompt, // ← MAIN ENTRY POINT
|
||||
buildAdversarialInstructions,
|
||||
analyzePromptEffectiveness,
|
||||
analyzeGeneratedContent,
|
||||
getSupportedDetectors,
|
||||
ADVERSARIAL_INSTRUCTIONS,
|
||||
ELEMENT_SPECIFIC_INSTRUCTIONS
|
||||
};
|
||||
368
lib/adversarial-generation/AdversarialStyleEnhancement.js
Normal file
368
lib/adversarial-generation/AdversarialStyleEnhancement.js
Normal file
@ -0,0 +1,368 @@
|
||||
// ========================================
|
||||
// ÉTAPE 4: ENHANCEMENT STYLE PERSONNALITÉ ADVERSARIAL
|
||||
// Responsabilité: Appliquer le style personnalité avec Mistral + anti-détection
|
||||
// LLM: Mistral (température 0.8) + Prompts adversariaux
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
const { createAdversarialPrompt } = require('./AdversarialPromptEngine');
|
||||
const { DetectorStrategyManager } = require('./DetectorStrategies');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - ENHANCEMENT STYLE
|
||||
* Input: { content: {}, csvData: {}, context: {} }
|
||||
* Output: { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function applyPersonalityStyleAdversarial(input) {
|
||||
return await tracer.run('AdversarialStyleEnhancement.applyPersonalityStyleAdversarial()', async () => {
|
||||
const { content, csvData, context = {}, adversarialConfig = {} } = input;
|
||||
|
||||
// Configuration adversariale par défaut
|
||||
const config = {
|
||||
detectorTarget: adversarialConfig.detectorTarget || 'general',
|
||||
intensity: adversarialConfig.intensity || 1.0,
|
||||
enableAdaptiveStrategy: adversarialConfig.enableAdaptiveStrategy || true,
|
||||
contextualMode: adversarialConfig.contextualMode !== false,
|
||||
...adversarialConfig
|
||||
};
|
||||
|
||||
// Initialiser manager détecteur
|
||||
const detectorManager = new DetectorStrategyManager(config.detectorTarget);
|
||||
|
||||
await tracer.annotate({
|
||||
step: '4/4',
|
||||
llmProvider: 'mistral',
|
||||
elementsCount: Object.keys(content).length,
|
||||
personality: csvData.personality?.nom,
|
||||
mc0: csvData.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🎯 ÉTAPE 4/4 ADVERSARIAL: Enhancement style ${csvData.personality?.nom} (Mistral + ${config.detectorTarget})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments à styliser`, 'INFO');
|
||||
|
||||
try {
|
||||
const personality = csvData.personality;
|
||||
|
||||
if (!personality) {
|
||||
logSh(`⚠️ ÉTAPE 4/4: Aucune personnalité définie, style standard`, 'WARNING');
|
||||
return {
|
||||
content,
|
||||
stats: { processed: Object.keys(content).length, enhanced: 0, duration: Date.now() - startTime },
|
||||
debug: { llmProvider: 'mistral', step: 4, personalityApplied: 'none' }
|
||||
};
|
||||
}
|
||||
|
||||
// 1. Préparer éléments pour stylisation
|
||||
const styleElements = prepareElementsForStyling(content);
|
||||
|
||||
// 2. Appliquer style en chunks avec prompts adversariaux
|
||||
const styledResults = await applyStyleInChunksAdversarial(styleElements, csvData, config, detectorManager);
|
||||
|
||||
// 3. Merger résultats
|
||||
const finalContent = { ...content };
|
||||
let actuallyStyled = 0;
|
||||
|
||||
Object.keys(styledResults).forEach(tag => {
|
||||
if (styledResults[tag] !== content[tag]) {
|
||||
finalContent[tag] = styledResults[tag];
|
||||
actuallyStyled++;
|
||||
}
|
||||
});
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: Object.keys(content).length,
|
||||
enhanced: actuallyStyled,
|
||||
personality: personality.nom,
|
||||
duration
|
||||
};
|
||||
|
||||
logSh(`✅ ÉTAPE 4/4 TERMINÉE: ${stats.enhanced} éléments stylisés ${personality.nom} (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event(`Enhancement style terminé`, stats);
|
||||
|
||||
return {
|
||||
content: finalContent,
|
||||
stats,
|
||||
debug: {
|
||||
llmProvider: 'mistral',
|
||||
step: 4,
|
||||
personalityApplied: personality.nom,
|
||||
styleCharacteristics: {
|
||||
vocabulaire: personality.vocabulairePref,
|
||||
connecteurs: personality.connecteursPref,
|
||||
style: personality.style
|
||||
},
|
||||
adversarialConfig: config,
|
||||
detectorTarget: config.detectorTarget,
|
||||
intensity: config.intensity
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ ÉTAPE 4/4 ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: retourner contenu original si Mistral indisponible
|
||||
logSh(`🔄 Fallback: contenu original conservé`, 'WARNING');
|
||||
return {
|
||||
content,
|
||||
stats: { processed: Object.keys(content).length, enhanced: 0, duration },
|
||||
debug: { llmProvider: 'mistral', step: 4, error: error.message, fallback: true }
|
||||
};
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Préparer éléments pour stylisation
|
||||
*/
|
||||
function prepareElementsForStyling(content) {
|
||||
const styleElements = [];
|
||||
|
||||
Object.keys(content).forEach(tag => {
|
||||
const text = content[tag];
|
||||
|
||||
// Tous les éléments peuvent bénéficier d'adaptation personnalité
|
||||
// Même les courts (titres) peuvent être adaptés au style
|
||||
styleElements.push({
|
||||
tag,
|
||||
content: text,
|
||||
priority: calculateStylePriority(text, tag)
|
||||
});
|
||||
});
|
||||
|
||||
// Trier par priorité (titres d'abord, puis textes longs)
|
||||
styleElements.sort((a, b) => b.priority - a.priority);
|
||||
|
||||
return styleElements;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculer priorité de stylisation
|
||||
*/
|
||||
function calculateStylePriority(text, tag) {
|
||||
let priority = 1.0;
|
||||
|
||||
// Titres = haute priorité (plus visible)
|
||||
if (tag.includes('Titre') || tag.includes('H1') || tag.includes('H2')) {
|
||||
priority += 0.5;
|
||||
}
|
||||
|
||||
// Textes longs = priorité selon longueur
|
||||
if (text.length > 200) {
|
||||
priority += 0.3;
|
||||
} else if (text.length > 100) {
|
||||
priority += 0.2;
|
||||
}
|
||||
|
||||
// Introduction = haute priorité
|
||||
if (tag.includes('intro') || tag.includes('Introduction')) {
|
||||
priority += 0.4;
|
||||
}
|
||||
|
||||
return priority;
|
||||
}
|
||||
|
||||
/**
|
||||
* Appliquer style en chunks avec prompts adversariaux
|
||||
*/
|
||||
async function applyStyleInChunksAdversarial(styleElements, csvData, adversarialConfig, detectorManager) {
|
||||
logSh(`🎯 Stylisation adversarial: ${styleElements.length} éléments selon ${csvData.personality.nom}`, 'DEBUG');
|
||||
|
||||
const results = {};
|
||||
const chunks = chunkArray(styleElements, 8); // Chunks de 8 pour Mistral
|
||||
|
||||
for (let chunkIndex = 0; chunkIndex < chunks.length; chunkIndex++) {
|
||||
const chunk = chunks[chunkIndex];
|
||||
|
||||
try {
|
||||
logSh(` 📦 Chunk ${chunkIndex + 1}/${chunks.length}: ${chunk.length} éléments`, 'DEBUG');
|
||||
|
||||
const basePrompt = createStylePrompt(chunk, csvData);
|
||||
|
||||
// Générer prompt adversarial pour stylisation
|
||||
const adversarialPrompt = createAdversarialPrompt(basePrompt, {
|
||||
detectorTarget: adversarialConfig.detectorTarget,
|
||||
intensity: adversarialConfig.intensity * 1.1, // Intensité plus élevée pour style (plus visible)
|
||||
elementType: 'style_enhancement',
|
||||
personality: csvData.personality,
|
||||
contextualMode: adversarialConfig.contextualMode,
|
||||
csvData: csvData,
|
||||
debugMode: false
|
||||
});
|
||||
|
||||
const styledResponse = await callLLM('mistral', adversarialPrompt, {
|
||||
temperature: 0.8,
|
||||
maxTokens: 3000
|
||||
}, csvData.personality);
|
||||
|
||||
const chunkResults = parseStyleResponse(styledResponse, chunk);
|
||||
Object.assign(results, chunkResults);
|
||||
|
||||
logSh(` ✅ Chunk ${chunkIndex + 1}: ${Object.keys(chunkResults).length} stylisés`, 'DEBUG');
|
||||
|
||||
// Délai entre chunks
|
||||
if (chunkIndex < chunks.length - 1) {
|
||||
await sleep(1500);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Chunk ${chunkIndex + 1} échoué: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: garder contenu original
|
||||
chunk.forEach(element => {
|
||||
results[element.tag] = element.content;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt de stylisation
|
||||
*/
|
||||
function createStylePrompt(chunk, csvData) {
|
||||
const personality = csvData.personality;
|
||||
|
||||
let prompt = `MISSION: Adapte UNIQUEMENT le style de ces contenus selon ${personality.nom}.
|
||||
|
||||
CONTEXTE: Article SEO e-commerce ${csvData.mc0}
|
||||
PERSONNALITÉ: ${personality.nom}
|
||||
DESCRIPTION: ${personality.description}
|
||||
STYLE: ${personality.style} adapté web professionnel
|
||||
VOCABULAIRE: ${personality.vocabulairePref}
|
||||
CONNECTEURS: ${personality.connecteursPref}
|
||||
NIVEAU TECHNIQUE: ${personality.niveauTechnique}
|
||||
LONGUEUR PHRASES: ${personality.longueurPhrases}
|
||||
|
||||
CONTENUS À STYLISER:
|
||||
|
||||
${chunk.map((item, i) => `[${i + 1}] TAG: ${item.tag} (Priorité: ${item.priority.toFixed(1)})
|
||||
CONTENU: "${item.content}"`).join('\n\n')}
|
||||
|
||||
OBJECTIFS STYLISATION ${personality.nom.toUpperCase()}:
|
||||
- Adapte le TON selon ${personality.style}
|
||||
- Vocabulaire: ${personality.vocabulairePref}
|
||||
- Connecteurs variés: ${personality.connecteursPref}
|
||||
- Phrases: ${personality.longueurPhrases}
|
||||
- Niveau: ${personality.niveauTechnique}
|
||||
|
||||
CONSIGNES STRICTES:
|
||||
- GARDE le même contenu informatif et technique
|
||||
- Adapte SEULEMENT ton, expressions, vocabulaire selon ${personality.nom}
|
||||
- RESPECTE longueur approximative (±20%)
|
||||
- ÉVITE répétitions excessives
|
||||
- Style ${personality.nom} reconnaissable mais NATUREL web
|
||||
- PAS de messages d'excuse
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] Contenu stylisé selon ${personality.nom}
|
||||
[2] Contenu stylisé selon ${personality.nom}
|
||||
etc...`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse stylisation
|
||||
*/
|
||||
function parseStyleResponse(response, chunk) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\n\[\d+\]|$)/gs;
|
||||
let match;
|
||||
let index = 0;
|
||||
|
||||
while ((match = regex.exec(response)) && index < chunk.length) {
|
||||
let styledContent = match[2].trim();
|
||||
const element = chunk[index];
|
||||
|
||||
// Nettoyer le contenu stylisé
|
||||
styledContent = cleanStyledContent(styledContent);
|
||||
|
||||
if (styledContent && styledContent.length > 10) {
|
||||
results[element.tag] = styledContent;
|
||||
logSh(`✅ Styled [${element.tag}]: "${styledContent.substring(0, 100)}..."`, 'DEBUG');
|
||||
} else {
|
||||
results[element.tag] = element.content;
|
||||
logSh(`⚠️ Fallback [${element.tag}]: stylisation invalide`, 'WARNING');
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
// Compléter les manquants
|
||||
while (index < chunk.length) {
|
||||
const element = chunk[index];
|
||||
results[element.tag] = element.content;
|
||||
index++;
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Nettoyer contenu stylisé
|
||||
*/
|
||||
function cleanStyledContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
// Supprimer préfixes indésirables
|
||||
content = content.replace(/^(Bon,?\s*)?(alors,?\s*)?voici\s+/gi, '');
|
||||
content = content.replace(/^pour\s+ce\s+contenu[,\s]*/gi, '');
|
||||
content = content.replace(/\*\*[^*]+\*\*/g, '');
|
||||
|
||||
// Réduire répétitions excessives mais garder le style personnalité
|
||||
content = content.replace(/(du coup[,\s]+){4,}/gi, 'du coup ');
|
||||
content = content.replace(/(bon[,\s]+){4,}/gi, 'bon ');
|
||||
content = content.replace(/(franchement[,\s]+){3,}/gi, 'franchement ');
|
||||
|
||||
content = content.replace(/\s{2,}/g, ' ');
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir instructions de style dynamiques
|
||||
*/
|
||||
function getPersonalityStyleInstructions(personality) {
|
||||
if (!personality) return "Style professionnel standard";
|
||||
|
||||
return `STYLE ${personality.nom.toUpperCase()} (${personality.style}):
|
||||
- Description: ${personality.description}
|
||||
- Vocabulaire: ${personality.vocabulairePref || 'professionnel'}
|
||||
- Connecteurs: ${personality.connecteursPref || 'par ailleurs, en effet'}
|
||||
- Mots-clés: ${personality.motsClesSecteurs || 'technique, qualité'}
|
||||
- Phrases: ${personality.longueurPhrases || 'Moyennes'}
|
||||
- Niveau: ${personality.niveauTechnique || 'Accessible'}
|
||||
- CTA: ${personality.ctaStyle || 'Professionnel'}`;
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
function chunkArray(array, size) {
|
||||
const chunks = [];
|
||||
for (let i = 0; i < array.length; i += size) {
|
||||
chunks.push(array.slice(i, i + size));
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
function sleep(ms) {
|
||||
return new Promise(resolve => setTimeout(resolve, ms));
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
applyPersonalityStyleAdversarial, // ← MAIN ENTRY POINT ADVERSARIAL
|
||||
prepareElementsForStyling,
|
||||
calculateStylePriority,
|
||||
applyStyleInChunksAdversarial,
|
||||
createStylePrompt,
|
||||
parseStyleResponse,
|
||||
getPersonalityStyleInstructions
|
||||
};
|
||||
316
lib/adversarial-generation/AdversarialTechnicalEnhancement.js
Normal file
316
lib/adversarial-generation/AdversarialTechnicalEnhancement.js
Normal file
@ -0,0 +1,316 @@
|
||||
// ========================================
|
||||
// ÉTAPE 2: ENHANCEMENT TECHNIQUE ADVERSARIAL
|
||||
// Responsabilité: Améliorer la précision technique avec GPT-4 + anti-détection
|
||||
// LLM: GPT-4o-mini (température 0.4) + Prompts adversariaux
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
const { createAdversarialPrompt } = require('./AdversarialPromptEngine');
|
||||
const { DetectorStrategyManager } = require('./DetectorStrategies');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - ENHANCEMENT TECHNIQUE ADVERSARIAL
|
||||
* Input: { content: {}, csvData: {}, context: {}, adversarialConfig: {} }
|
||||
* Output: { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function enhanceTechnicalTermsAdversarial(input) {
|
||||
return await tracer.run('AdversarialTechnicalEnhancement.enhanceTechnicalTermsAdversarial()', async () => {
|
||||
const { content, csvData, context = {}, adversarialConfig = {} } = input;
|
||||
|
||||
// Configuration adversariale par défaut
|
||||
const config = {
|
||||
detectorTarget: adversarialConfig.detectorTarget || 'general',
|
||||
intensity: adversarialConfig.intensity || 1.0,
|
||||
enableAdaptiveStrategy: adversarialConfig.enableAdaptiveStrategy || true,
|
||||
contextualMode: adversarialConfig.contextualMode !== false,
|
||||
...adversarialConfig
|
||||
};
|
||||
|
||||
// Initialiser manager détecteur
|
||||
const detectorManager = new DetectorStrategyManager(config.detectorTarget);
|
||||
|
||||
await tracer.annotate({
|
||||
step: '2/4',
|
||||
llmProvider: 'gpt4',
|
||||
elementsCount: Object.keys(content).length,
|
||||
mc0: csvData.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🎯 ÉTAPE 2/4 ADVERSARIAL: Enhancement technique (GPT-4 + ${config.detectorTarget})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments à analyser`, 'INFO');
|
||||
|
||||
try {
|
||||
// 1. Analyser tous les éléments pour détecter termes techniques (adversarial)
|
||||
const technicalAnalysis = await analyzeTechnicalTermsAdversarial(content, csvData, config, detectorManager);
|
||||
|
||||
// 2. Filter les éléments qui ont besoin d'enhancement
|
||||
const elementsNeedingEnhancement = technicalAnalysis.filter(item => item.needsEnhancement);
|
||||
|
||||
logSh(` 📋 Analyse: ${elementsNeedingEnhancement.length}/${Object.keys(content).length} éléments nécessitent enhancement`, 'INFO');
|
||||
|
||||
if (elementsNeedingEnhancement.length === 0) {
|
||||
logSh(`✅ ÉTAPE 2/4: Aucun enhancement nécessaire`, 'INFO');
|
||||
return {
|
||||
content,
|
||||
stats: { processed: Object.keys(content).length, enhanced: 0, duration: Date.now() - startTime },
|
||||
debug: { llmProvider: 'gpt4', step: 2, enhancementsApplied: [] }
|
||||
};
|
||||
}
|
||||
|
||||
// 3. Améliorer les éléments sélectionnés avec prompts adversariaux
|
||||
const enhancedResults = await enhanceSelectedElementsAdversarial(elementsNeedingEnhancement, csvData, config, detectorManager);
|
||||
|
||||
// 4. Merger avec contenu original
|
||||
const finalContent = { ...content };
|
||||
let actuallyEnhanced = 0;
|
||||
|
||||
Object.keys(enhancedResults).forEach(tag => {
|
||||
if (enhancedResults[tag] !== content[tag]) {
|
||||
finalContent[tag] = enhancedResults[tag];
|
||||
actuallyEnhanced++;
|
||||
}
|
||||
});
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: Object.keys(content).length,
|
||||
enhanced: actuallyEnhanced,
|
||||
candidate: elementsNeedingEnhancement.length,
|
||||
duration
|
||||
};
|
||||
|
||||
logSh(`✅ ÉTAPE 2/4 TERMINÉE: ${stats.enhanced} éléments améliorés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event(`Enhancement technique terminé`, stats);
|
||||
|
||||
return {
|
||||
content: finalContent,
|
||||
stats,
|
||||
debug: {
|
||||
llmProvider: 'gpt4',
|
||||
step: 2,
|
||||
enhancementsApplied: Object.keys(enhancedResults),
|
||||
technicalTermsFound: elementsNeedingEnhancement.map(e => e.technicalTerms),
|
||||
adversarialConfig: config,
|
||||
detectorTarget: config.detectorTarget,
|
||||
intensity: config.intensity
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ ÉTAPE 2/4 ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
throw new Error(`TechnicalEnhancement failed: ${error.message}`);
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser tous les éléments pour détecter termes techniques (adversarial)
|
||||
*/
|
||||
async function analyzeTechnicalTermsAdversarial(content, csvData, adversarialConfig, detectorManager) {
|
||||
logSh(`🎯 Analyse termes techniques adversarial batch`, 'DEBUG');
|
||||
|
||||
const contentEntries = Object.keys(content);
|
||||
|
||||
const analysisPrompt = `MISSION: Analyser ces ${contentEntries.length} contenus et identifier leurs termes techniques.
|
||||
|
||||
CONTEXTE: ${csvData.mc0} - Secteur: signalétique/impression
|
||||
|
||||
CONTENUS À ANALYSER:
|
||||
|
||||
${contentEntries.map((tag, i) => `[${i + 1}] TAG: ${tag}
|
||||
CONTENU: "${content[tag]}"`).join('\n\n')}
|
||||
|
||||
CONSIGNES:
|
||||
- Identifie UNIQUEMENT les vrais termes techniques métier/industrie
|
||||
- Évite mots génériques (qualité, service, pratique, personnalisé)
|
||||
- Focus: matériaux, procédés, normes, dimensions, technologies
|
||||
- Si aucun terme technique → "AUCUN"
|
||||
|
||||
EXEMPLES VALIDES: dibond, impression UV, fraisage CNC, épaisseur 3mm
|
||||
EXEMPLES INVALIDES: durable, pratique, personnalisé, moderne
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] dibond, impression UV OU AUCUN
|
||||
[2] AUCUN
|
||||
[3] aluminium, fraisage CNC OU AUCUN
|
||||
etc...`;
|
||||
|
||||
try {
|
||||
// Générer prompt adversarial pour analyse
|
||||
const adversarialAnalysisPrompt = createAdversarialPrompt(analysisPrompt, {
|
||||
detectorTarget: adversarialConfig.detectorTarget,
|
||||
intensity: adversarialConfig.intensity * 0.8, // Intensité modérée pour analyse
|
||||
elementType: 'technical_analysis',
|
||||
personality: csvData.personality,
|
||||
contextualMode: adversarialConfig.contextualMode,
|
||||
csvData: csvData,
|
||||
debugMode: false
|
||||
});
|
||||
|
||||
const analysisResponse = await callLLM('gpt4', adversarialAnalysisPrompt, {
|
||||
temperature: 0.3,
|
||||
maxTokens: 2000
|
||||
}, csvData.personality);
|
||||
|
||||
return parseAnalysisResponse(analysisResponse, content, contentEntries);
|
||||
|
||||
} catch (error) {
|
||||
logSh(`❌ Analyse termes techniques échouée: ${error.message}`, 'ERROR');
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Améliorer les éléments sélectionnés avec prompts adversariaux
|
||||
*/
|
||||
async function enhanceSelectedElementsAdversarial(elementsNeedingEnhancement, csvData, adversarialConfig, detectorManager) {
|
||||
logSh(`🎯 Enhancement adversarial ${elementsNeedingEnhancement.length} éléments`, 'DEBUG');
|
||||
|
||||
const enhancementPrompt = `MISSION: Améliore UNIQUEMENT la précision technique de ces contenus.
|
||||
|
||||
CONTEXTE: ${csvData.mc0} - Secteur signalétique/impression
|
||||
PERSONNALITÉ: ${csvData.personality?.nom} (${csvData.personality?.style})
|
||||
|
||||
CONTENUS À AMÉLIORER:
|
||||
|
||||
${elementsNeedingEnhancement.map((item, i) => `[${i + 1}] TAG: ${item.tag}
|
||||
CONTENU: "${item.content}"
|
||||
TERMES TECHNIQUES: ${item.technicalTerms.join(', ')}`).join('\n\n')}
|
||||
|
||||
CONSIGNES:
|
||||
- GARDE même longueur, structure et ton ${csvData.personality?.style}
|
||||
- Intègre naturellement les termes techniques listés
|
||||
- NE CHANGE PAS le fond du message
|
||||
- Vocabulaire expert mais accessible
|
||||
- Termes secteur: dibond, aluminium, impression UV, fraisage, PMMA
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] Contenu avec amélioration technique
|
||||
[2] Contenu avec amélioration technique
|
||||
etc...`;
|
||||
|
||||
try {
|
||||
// Générer prompt adversarial pour enhancement
|
||||
const adversarialEnhancementPrompt = createAdversarialPrompt(enhancementPrompt, {
|
||||
detectorTarget: adversarialConfig.detectorTarget,
|
||||
intensity: adversarialConfig.intensity,
|
||||
elementType: 'technical_enhancement',
|
||||
personality: csvData.personality,
|
||||
contextualMode: adversarialConfig.contextualMode,
|
||||
csvData: csvData,
|
||||
debugMode: false
|
||||
});
|
||||
|
||||
const enhancedResponse = await callLLM('gpt4', adversarialEnhancementPrompt, {
|
||||
temperature: 0.4,
|
||||
maxTokens: 5000
|
||||
}, csvData.personality);
|
||||
|
||||
return parseEnhancementResponse(enhancedResponse, elementsNeedingEnhancement);
|
||||
|
||||
} catch (error) {
|
||||
logSh(`❌ Enhancement éléments échoué: ${error.message}`, 'ERROR');
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse analyse
|
||||
*/
|
||||
function parseAnalysisResponse(response, content, contentEntries) {
|
||||
const results = [];
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\[\d+\]|$)/gs;
|
||||
let match;
|
||||
const parsedItems = {};
|
||||
|
||||
while ((match = regex.exec(response)) !== null) {
|
||||
const index = parseInt(match[1]) - 1;
|
||||
const termsText = match[2].trim();
|
||||
parsedItems[index] = termsText;
|
||||
}
|
||||
|
||||
contentEntries.forEach((tag, index) => {
|
||||
const termsText = parsedItems[index] || 'AUCUN';
|
||||
const hasTerms = !termsText.toUpperCase().includes('AUCUN');
|
||||
|
||||
const technicalTerms = hasTerms ?
|
||||
termsText.split(',').map(t => t.trim()).filter(t => t.length > 0) :
|
||||
[];
|
||||
|
||||
results.push({
|
||||
tag,
|
||||
content: content[tag],
|
||||
technicalTerms,
|
||||
needsEnhancement: hasTerms && technicalTerms.length > 0
|
||||
});
|
||||
|
||||
logSh(`🔍 [${tag}]: ${hasTerms ? technicalTerms.join(', ') : 'aucun terme technique'}`, 'DEBUG');
|
||||
});
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse enhancement
|
||||
*/
|
||||
function parseEnhancementResponse(response, elementsNeedingEnhancement) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\[\d+\]|$)/gs;
|
||||
let match;
|
||||
let index = 0;
|
||||
|
||||
while ((match = regex.exec(response)) && index < elementsNeedingEnhancement.length) {
|
||||
let enhancedContent = match[2].trim();
|
||||
const element = elementsNeedingEnhancement[index];
|
||||
|
||||
// Nettoyer le contenu généré
|
||||
enhancedContent = cleanEnhancedContent(enhancedContent);
|
||||
|
||||
if (enhancedContent && enhancedContent.length > 10) {
|
||||
results[element.tag] = enhancedContent;
|
||||
logSh(`✅ Enhanced [${element.tag}]: "${enhancedContent.substring(0, 100)}..."`, 'DEBUG');
|
||||
} else {
|
||||
results[element.tag] = element.content;
|
||||
logSh(`⚠️ Fallback [${element.tag}]: contenu invalide`, 'WARNING');
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
// Compléter les manquants
|
||||
while (index < elementsNeedingEnhancement.length) {
|
||||
const element = elementsNeedingEnhancement[index];
|
||||
results[element.tag] = element.content;
|
||||
index++;
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Nettoyer contenu amélioré
|
||||
*/
|
||||
function cleanEnhancedContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
// Supprimer préfixes indésirables
|
||||
content = content.replace(/^(Bon,?\s*)?(alors,?\s*)?pour\s+/gi, '');
|
||||
content = content.replace(/\*\*[^*]+\*\*/g, '');
|
||||
content = content.replace(/\s{2,}/g, ' ');
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
enhanceTechnicalTermsAdversarial, // ← MAIN ENTRY POINT ADVERSARIAL
|
||||
analyzeTechnicalTermsAdversarial,
|
||||
enhanceSelectedElementsAdversarial,
|
||||
parseAnalysisResponse,
|
||||
parseEnhancementResponse
|
||||
};
|
||||
429
lib/adversarial-generation/AdversarialTransitionEnhancement.js
Normal file
429
lib/adversarial-generation/AdversarialTransitionEnhancement.js
Normal file
@ -0,0 +1,429 @@
|
||||
// ========================================
|
||||
// ÉTAPE 3: ENHANCEMENT TRANSITIONS ADVERSARIAL
|
||||
// Responsabilité: Améliorer la fluidité avec Gemini + anti-détection
|
||||
// LLM: Gemini (température 0.6) + Prompts adversariaux
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
const { createAdversarialPrompt } = require('./AdversarialPromptEngine');
|
||||
const { DetectorStrategyManager } = require('./DetectorStrategies');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - ENHANCEMENT TRANSITIONS ADVERSARIAL
|
||||
* Input: { content: {}, csvData: {}, context: {}, adversarialConfig: {} }
|
||||
* Output: { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function enhanceTransitionsAdversarial(input) {
|
||||
return await tracer.run('AdversarialTransitionEnhancement.enhanceTransitionsAdversarial()', async () => {
|
||||
const { content, csvData, context = {}, adversarialConfig = {} } = input;
|
||||
|
||||
// Configuration adversariale par défaut
|
||||
const config = {
|
||||
detectorTarget: adversarialConfig.detectorTarget || 'general',
|
||||
intensity: adversarialConfig.intensity || 1.0,
|
||||
enableAdaptiveStrategy: adversarialConfig.enableAdaptiveStrategy || true,
|
||||
contextualMode: adversarialConfig.contextualMode !== false,
|
||||
...adversarialConfig
|
||||
};
|
||||
|
||||
// Initialiser manager détecteur
|
||||
const detectorManager = new DetectorStrategyManager(config.detectorTarget);
|
||||
|
||||
await tracer.annotate({
|
||||
step: '3/4',
|
||||
llmProvider: 'gemini',
|
||||
elementsCount: Object.keys(content).length,
|
||||
mc0: csvData.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🎯 ÉTAPE 3/4 ADVERSARIAL: Enhancement transitions (Gemini + ${config.detectorTarget})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments à analyser`, 'INFO');
|
||||
|
||||
try {
|
||||
// 1. Analyser quels éléments ont besoin d'amélioration transitions
|
||||
const elementsNeedingTransitions = analyzeTransitionNeeds(content);
|
||||
|
||||
logSh(` 📋 Analyse: ${elementsNeedingTransitions.length}/${Object.keys(content).length} éléments nécessitent fluidité`, 'INFO');
|
||||
|
||||
if (elementsNeedingTransitions.length === 0) {
|
||||
logSh(`✅ ÉTAPE 3/4: Transitions déjà optimales`, 'INFO');
|
||||
return {
|
||||
content,
|
||||
stats: { processed: Object.keys(content).length, enhanced: 0, duration: Date.now() - startTime },
|
||||
debug: { llmProvider: 'gemini', step: 3, enhancementsApplied: [] }
|
||||
};
|
||||
}
|
||||
|
||||
// 2. Améliorer en chunks avec prompts adversariaux pour Gemini
|
||||
const improvedResults = await improveTransitionsInChunksAdversarial(elementsNeedingTransitions, csvData, config, detectorManager);
|
||||
|
||||
// 3. Merger avec contenu original
|
||||
const finalContent = { ...content };
|
||||
let actuallyImproved = 0;
|
||||
|
||||
Object.keys(improvedResults).forEach(tag => {
|
||||
if (improvedResults[tag] !== content[tag]) {
|
||||
finalContent[tag] = improvedResults[tag];
|
||||
actuallyImproved++;
|
||||
}
|
||||
});
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: Object.keys(content).length,
|
||||
enhanced: actuallyImproved,
|
||||
candidate: elementsNeedingTransitions.length,
|
||||
duration
|
||||
};
|
||||
|
||||
logSh(`✅ ÉTAPE 3/4 TERMINÉE: ${stats.enhanced} éléments fluidifiés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event(`Enhancement transitions terminé`, stats);
|
||||
|
||||
return {
|
||||
content: finalContent,
|
||||
stats,
|
||||
debug: {
|
||||
llmProvider: 'gemini',
|
||||
step: 3,
|
||||
enhancementsApplied: Object.keys(improvedResults),
|
||||
transitionIssues: elementsNeedingTransitions.map(e => e.issues),
|
||||
adversarialConfig: config,
|
||||
detectorTarget: config.detectorTarget,
|
||||
intensity: config.intensity
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ ÉTAPE 3/4 ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: retourner contenu original si Gemini indisponible
|
||||
logSh(`🔄 Fallback: contenu original conservé`, 'WARNING');
|
||||
return {
|
||||
content,
|
||||
stats: { processed: Object.keys(content).length, enhanced: 0, duration },
|
||||
debug: { llmProvider: 'gemini', step: 3, error: error.message, fallback: true }
|
||||
};
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser besoin d'amélioration transitions
|
||||
*/
|
||||
function analyzeTransitionNeeds(content) {
|
||||
const elementsNeedingTransitions = [];
|
||||
|
||||
Object.keys(content).forEach(tag => {
|
||||
const text = content[tag];
|
||||
|
||||
// Filtrer les éléments longs (>150 chars) qui peuvent bénéficier d'améliorations
|
||||
if (text.length > 150) {
|
||||
const needsTransitions = evaluateTransitionQuality(text);
|
||||
|
||||
if (needsTransitions.needsImprovement) {
|
||||
elementsNeedingTransitions.push({
|
||||
tag,
|
||||
content: text,
|
||||
issues: needsTransitions.issues,
|
||||
score: needsTransitions.score
|
||||
});
|
||||
|
||||
logSh(` 🔍 [${tag}]: Score=${needsTransitions.score.toFixed(2)}, Issues: ${needsTransitions.issues.join(', ')}`, 'DEBUG');
|
||||
}
|
||||
} else {
|
||||
logSh(` ⏭️ [${tag}]: Trop court (${text.length}c), ignoré`, 'DEBUG');
|
||||
}
|
||||
});
|
||||
|
||||
// Trier par score (plus problématique en premier)
|
||||
elementsNeedingTransitions.sort((a, b) => a.score - b.score);
|
||||
|
||||
return elementsNeedingTransitions;
|
||||
}
|
||||
|
||||
/**
|
||||
* Évaluer qualité transitions d'un texte
|
||||
*/
|
||||
function evaluateTransitionQuality(text) {
|
||||
const sentences = text.split(/[.!?]+/).filter(s => s.trim().length > 10);
|
||||
|
||||
if (sentences.length < 2) {
|
||||
return { needsImprovement: false, score: 1.0, issues: [] };
|
||||
}
|
||||
|
||||
const issues = [];
|
||||
let score = 1.0; // Score parfait = 1.0, problématique = 0.0
|
||||
|
||||
// Analyse 1: Connecteurs répétitifs
|
||||
const repetitiveConnectors = analyzeRepetitiveConnectors(text);
|
||||
if (repetitiveConnectors > 0.3) {
|
||||
issues.push('connecteurs_répétitifs');
|
||||
score -= 0.3;
|
||||
}
|
||||
|
||||
// Analyse 2: Transitions abruptes
|
||||
const abruptTransitions = analyzeAbruptTransitions(sentences);
|
||||
if (abruptTransitions > 0.4) {
|
||||
issues.push('transitions_abruptes');
|
||||
score -= 0.4;
|
||||
}
|
||||
|
||||
// Analyse 3: Manque de variété dans longueurs
|
||||
const sentenceVariety = analyzeSentenceVariety(sentences);
|
||||
if (sentenceVariety < 0.3) {
|
||||
issues.push('phrases_uniformes');
|
||||
score -= 0.2;
|
||||
}
|
||||
|
||||
// Analyse 4: Trop formel ou trop familier
|
||||
const formalityIssues = analyzeFormalityBalance(text);
|
||||
if (formalityIssues > 0.5) {
|
||||
issues.push('formalité_déséquilibrée');
|
||||
score -= 0.1;
|
||||
}
|
||||
|
||||
return {
|
||||
needsImprovement: score < 0.6,
|
||||
score: Math.max(0, score),
|
||||
issues
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Améliorer transitions en chunks avec prompts adversariaux
|
||||
*/
|
||||
async function improveTransitionsInChunksAdversarial(elementsNeedingTransitions, csvData, adversarialConfig, detectorManager) {
|
||||
logSh(`🎯 Amélioration transitions adversarial: ${elementsNeedingTransitions.length} éléments`, 'DEBUG');
|
||||
|
||||
const results = {};
|
||||
const chunks = chunkArray(elementsNeedingTransitions, 6); // Chunks plus petits pour Gemini
|
||||
|
||||
for (let chunkIndex = 0; chunkIndex < chunks.length; chunkIndex++) {
|
||||
const chunk = chunks[chunkIndex];
|
||||
|
||||
try {
|
||||
logSh(` 📦 Chunk ${chunkIndex + 1}/${chunks.length}: ${chunk.length} éléments`, 'DEBUG');
|
||||
|
||||
const basePrompt = createTransitionImprovementPrompt(chunk, csvData);
|
||||
|
||||
// Générer prompt adversarial pour amélioration transitions
|
||||
const adversarialPrompt = createAdversarialPrompt(basePrompt, {
|
||||
detectorTarget: adversarialConfig.detectorTarget,
|
||||
intensity: adversarialConfig.intensity * 0.9, // Intensité légèrement réduite pour transitions
|
||||
elementType: 'transition_enhancement',
|
||||
personality: csvData.personality,
|
||||
contextualMode: adversarialConfig.contextualMode,
|
||||
csvData: csvData,
|
||||
debugMode: false
|
||||
});
|
||||
|
||||
const improvedResponse = await callLLM('gemini', adversarialPrompt, {
|
||||
temperature: 0.6,
|
||||
maxTokens: 2500
|
||||
}, csvData.personality);
|
||||
|
||||
const chunkResults = parseTransitionResponse(improvedResponse, chunk);
|
||||
Object.assign(results, chunkResults);
|
||||
|
||||
logSh(` ✅ Chunk ${chunkIndex + 1}: ${Object.keys(chunkResults).length} améliorés`, 'DEBUG');
|
||||
|
||||
// Délai entre chunks
|
||||
if (chunkIndex < chunks.length - 1) {
|
||||
await sleep(1500);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Chunk ${chunkIndex + 1} échoué: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: garder contenu original pour ce chunk
|
||||
chunk.forEach(element => {
|
||||
results[element.tag] = element.content;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt amélioration transitions
|
||||
*/
|
||||
function createTransitionImprovementPrompt(chunk, csvData) {
|
||||
const personality = csvData.personality;
|
||||
|
||||
let prompt = `MISSION: Améliore UNIQUEMENT les transitions et fluidité de ces contenus.
|
||||
|
||||
CONTEXTE: Article SEO ${csvData.mc0}
|
||||
PERSONNALITÉ: ${personality?.nom} (${personality?.style} web professionnel)
|
||||
CONNECTEURS PRÉFÉRÉS: ${personality?.connecteursPref}
|
||||
|
||||
CONTENUS À FLUIDIFIER:
|
||||
|
||||
${chunk.map((item, i) => `[${i + 1}] TAG: ${item.tag}
|
||||
PROBLÈMES: ${item.issues.join(', ')}
|
||||
CONTENU: "${item.content}"`).join('\n\n')}
|
||||
|
||||
OBJECTIFS:
|
||||
- Connecteurs plus naturels et variés: ${personality?.connecteursPref}
|
||||
- Transitions fluides entre idées
|
||||
- ÉVITE répétitions excessives ("du coup", "franchement", "par ailleurs")
|
||||
- Style ${personality?.style} mais professionnel web
|
||||
|
||||
CONSIGNES STRICTES:
|
||||
- NE CHANGE PAS le fond du message
|
||||
- GARDE même structure et longueur
|
||||
- Améliore SEULEMENT la fluidité
|
||||
- RESPECTE le style ${personality?.nom}
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] Contenu avec transitions améliorées
|
||||
[2] Contenu avec transitions améliorées
|
||||
etc...`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse amélioration transitions
|
||||
*/
|
||||
function parseTransitionResponse(response, chunk) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\n\[\d+\]|$)/gs;
|
||||
let match;
|
||||
let index = 0;
|
||||
|
||||
while ((match = regex.exec(response)) && index < chunk.length) {
|
||||
let improvedContent = match[2].trim();
|
||||
const element = chunk[index];
|
||||
|
||||
// Nettoyer le contenu amélioré
|
||||
improvedContent = cleanImprovedContent(improvedContent);
|
||||
|
||||
if (improvedContent && improvedContent.length > 10) {
|
||||
results[element.tag] = improvedContent;
|
||||
logSh(`✅ Improved [${element.tag}]: "${improvedContent.substring(0, 100)}..."`, 'DEBUG');
|
||||
} else {
|
||||
results[element.tag] = element.content;
|
||||
logSh(`⚠️ Fallback [${element.tag}]: amélioration invalide`, 'WARNING');
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
// Compléter les manquants
|
||||
while (index < chunk.length) {
|
||||
const element = chunk[index];
|
||||
results[element.tag] = element.content;
|
||||
index++;
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
function analyzeRepetitiveConnectors(content) {
|
||||
const connectors = ['par ailleurs', 'en effet', 'de plus', 'cependant', 'ainsi', 'donc'];
|
||||
let totalConnectors = 0;
|
||||
let repetitions = 0;
|
||||
|
||||
connectors.forEach(connector => {
|
||||
const matches = (content.match(new RegExp(`\\b${connector}\\b`, 'gi')) || []);
|
||||
totalConnectors += matches.length;
|
||||
if (matches.length > 1) repetitions += matches.length - 1;
|
||||
});
|
||||
|
||||
return totalConnectors > 0 ? repetitions / totalConnectors : 0;
|
||||
}
|
||||
|
||||
function analyzeAbruptTransitions(sentences) {
|
||||
if (sentences.length < 2) return 0;
|
||||
|
||||
let abruptCount = 0;
|
||||
|
||||
for (let i = 1; i < sentences.length; i++) {
|
||||
const current = sentences[i].trim();
|
||||
const hasConnector = hasTransitionWord(current);
|
||||
|
||||
if (!hasConnector && current.length > 30) {
|
||||
abruptCount++;
|
||||
}
|
||||
}
|
||||
|
||||
return abruptCount / (sentences.length - 1);
|
||||
}
|
||||
|
||||
function analyzeSentenceVariety(sentences) {
|
||||
if (sentences.length < 2) return 1;
|
||||
|
||||
const lengths = sentences.map(s => s.trim().length);
|
||||
const avgLength = lengths.reduce((a, b) => a + b, 0) / lengths.length;
|
||||
const variance = lengths.reduce((acc, len) => acc + Math.pow(len - avgLength, 2), 0) / lengths.length;
|
||||
const stdDev = Math.sqrt(variance);
|
||||
|
||||
return Math.min(1, stdDev / avgLength);
|
||||
}
|
||||
|
||||
function analyzeFormalityBalance(content) {
|
||||
const formalIndicators = ['il convient de', 'par conséquent', 'néanmoins', 'toutefois'];
|
||||
const casualIndicators = ['du coup', 'bon', 'franchement', 'nickel'];
|
||||
|
||||
let formalCount = 0;
|
||||
let casualCount = 0;
|
||||
|
||||
formalIndicators.forEach(indicator => {
|
||||
if (content.toLowerCase().includes(indicator)) formalCount++;
|
||||
});
|
||||
|
||||
casualIndicators.forEach(indicator => {
|
||||
if (content.toLowerCase().includes(indicator)) casualCount++;
|
||||
});
|
||||
|
||||
const total = formalCount + casualCount;
|
||||
if (total === 0) return 0;
|
||||
|
||||
// Déséquilibre si trop d'un côté
|
||||
const balance = Math.abs(formalCount - casualCount) / total;
|
||||
return balance;
|
||||
}
|
||||
|
||||
function hasTransitionWord(sentence) {
|
||||
const connectors = ['par ailleurs', 'en effet', 'de plus', 'cependant', 'ainsi', 'donc', 'ensuite', 'puis', 'également', 'aussi'];
|
||||
return connectors.some(connector => sentence.toLowerCase().includes(connector));
|
||||
}
|
||||
|
||||
function cleanImprovedContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
content = content.replace(/^(Bon,?\s*)?(alors,?\s*)?/, '');
|
||||
content = content.replace(/\s{2,}/g, ' ');
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
function chunkArray(array, size) {
|
||||
const chunks = [];
|
||||
for (let i = 0; i < array.length; i += size) {
|
||||
chunks.push(array.slice(i, i + size));
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
function sleep(ms) {
|
||||
return new Promise(resolve => setTimeout(resolve, ms));
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
enhanceTransitionsAdversarial, // ← MAIN ENTRY POINT ADVERSARIAL
|
||||
analyzeTransitionNeeds,
|
||||
evaluateTransitionQuality,
|
||||
improveTransitionsInChunksAdversarial,
|
||||
createTransitionImprovementPrompt,
|
||||
parseTransitionResponse
|
||||
};
|
||||
391
lib/adversarial-generation/AdversarialUtils.js
Normal file
391
lib/adversarial-generation/AdversarialUtils.js
Normal file
@ -0,0 +1,391 @@
|
||||
// ========================================
|
||||
// ADVERSARIAL UTILS - UTILITAIRES MODULAIRES
|
||||
// Responsabilité: Fonctions utilitaires partagées par tous les modules adversariaux
|
||||
// Architecture: Helper functions réutilisables et composables
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
|
||||
/**
|
||||
* ANALYSEURS DE CONTENU
|
||||
*/
|
||||
|
||||
/**
|
||||
* Analyser score de diversité lexicale
|
||||
*/
|
||||
function analyzeLexicalDiversity(content) {
|
||||
if (!content || typeof content !== 'string') return 0;
|
||||
|
||||
const words = content.toLowerCase()
|
||||
.split(/\s+/)
|
||||
.filter(word => word.length > 2)
|
||||
.map(word => word.replace(/[^\w]/g, ''));
|
||||
|
||||
if (words.length === 0) return 0;
|
||||
|
||||
const uniqueWords = [...new Set(words)];
|
||||
return (uniqueWords.length / words.length) * 100;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser variation des longueurs de phrases
|
||||
*/
|
||||
function analyzeSentenceVariation(content) {
|
||||
if (!content || typeof content !== 'string') return 0;
|
||||
|
||||
const sentences = content.split(/[.!?]+/)
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 5);
|
||||
|
||||
if (sentences.length < 2) return 0;
|
||||
|
||||
const lengths = sentences.map(s => s.split(/\s+/).length);
|
||||
const avgLength = lengths.reduce((a, b) => a + b, 0) / lengths.length;
|
||||
const variance = lengths.reduce((acc, len) => acc + Math.pow(len - avgLength, 2), 0) / lengths.length;
|
||||
const stdDev = Math.sqrt(variance);
|
||||
|
||||
return Math.min(100, (stdDev / avgLength) * 100);
|
||||
}
|
||||
|
||||
/**
|
||||
* Détecter mots typiques IA
|
||||
*/
|
||||
function detectAIFingerprints(content) {
|
||||
const aiFingerprints = {
|
||||
words: ['optimal', 'comprehensive', 'seamless', 'robust', 'leverage', 'cutting-edge', 'state-of-the-art', 'furthermore', 'moreover'],
|
||||
phrases: ['it is important to note', 'it should be noted', 'it is worth mentioning', 'in conclusion', 'to summarize'],
|
||||
connectors: ['par ailleurs', 'en effet', 'de plus', 'cependant', 'ainsi', 'donc']
|
||||
};
|
||||
|
||||
const results = {
|
||||
words: 0,
|
||||
phrases: 0,
|
||||
connectors: 0,
|
||||
totalScore: 0
|
||||
};
|
||||
|
||||
const lowerContent = content.toLowerCase();
|
||||
|
||||
// Compter mots IA
|
||||
aiFingerprints.words.forEach(word => {
|
||||
const matches = (lowerContent.match(new RegExp(`\\b${word}\\b`, 'g')) || []);
|
||||
results.words += matches.length;
|
||||
});
|
||||
|
||||
// Compter phrases typiques
|
||||
aiFingerprints.phrases.forEach(phrase => {
|
||||
if (lowerContent.includes(phrase)) {
|
||||
results.phrases += 1;
|
||||
}
|
||||
});
|
||||
|
||||
// Compter connecteurs répétitifs
|
||||
aiFingerprints.connectors.forEach(connector => {
|
||||
const matches = (lowerContent.match(new RegExp(`\\b${connector}\\b`, 'g')) || []);
|
||||
if (matches.length > 1) {
|
||||
results.connectors += matches.length - 1; // Pénalité répétition
|
||||
}
|
||||
});
|
||||
|
||||
// Score total (sur 100)
|
||||
const wordCount = content.split(/\s+/).length;
|
||||
results.totalScore = Math.min(100,
|
||||
(results.words * 5 + results.phrases * 10 + results.connectors * 3) / Math.max(wordCount, 1) * 100
|
||||
);
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser uniformité structurelle
|
||||
*/
|
||||
function analyzeStructuralUniformity(content) {
|
||||
const sentences = content.split(/[.!?]+/)
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 5);
|
||||
|
||||
if (sentences.length < 3) return 0;
|
||||
|
||||
const structures = sentences.map(sentence => {
|
||||
const words = sentence.split(/\s+/);
|
||||
return {
|
||||
length: words.length,
|
||||
startsWithConnector: /^(par ailleurs|en effet|de plus|cependant|ainsi|donc|ensuite|puis)/i.test(sentence),
|
||||
hasComma: sentence.includes(','),
|
||||
hasSubordinate: /qui|que|dont|où|quand|comme|parce que|puisque|bien que/i.test(sentence)
|
||||
};
|
||||
});
|
||||
|
||||
// Calculer uniformité
|
||||
const avgLength = structures.reduce((sum, s) => sum + s.length, 0) / structures.length;
|
||||
const lengthVariance = structures.reduce((sum, s) => sum + Math.pow(s.length - avgLength, 2), 0) / structures.length;
|
||||
|
||||
const connectorRatio = structures.filter(s => s.startsWithConnector).length / structures.length;
|
||||
const commaRatio = structures.filter(s => s.hasComma).length / structures.length;
|
||||
|
||||
// Plus c'est uniforme, plus le score est élevé (mauvais pour anti-détection)
|
||||
const uniformityScore = 100 - (Math.sqrt(lengthVariance) / avgLength * 100) -
|
||||
(Math.abs(0.3 - connectorRatio) * 50) - (Math.abs(0.5 - commaRatio) * 30);
|
||||
|
||||
return Math.max(0, Math.min(100, uniformityScore));
|
||||
}
|
||||
|
||||
/**
|
||||
* COMPARATEURS DE CONTENU
|
||||
*/
|
||||
|
||||
/**
|
||||
* Comparer deux contenus et calculer taux de modification
|
||||
*/
|
||||
function compareContentModification(original, modified) {
|
||||
if (!original || !modified) return 0;
|
||||
|
||||
const originalWords = original.toLowerCase().split(/\s+/).filter(w => w.length > 2);
|
||||
const modifiedWords = modified.toLowerCase().split(/\s+/).filter(w => w.length > 2);
|
||||
|
||||
// Calcul de distance Levenshtein approximative (par mots)
|
||||
let changes = 0;
|
||||
const maxLength = Math.max(originalWords.length, modifiedWords.length);
|
||||
|
||||
for (let i = 0; i < maxLength; i++) {
|
||||
if (originalWords[i] !== modifiedWords[i]) {
|
||||
changes++;
|
||||
}
|
||||
}
|
||||
|
||||
return (changes / maxLength) * 100;
|
||||
}
|
||||
|
||||
/**
|
||||
* Évaluer amélioration adversariale
|
||||
*/
|
||||
function evaluateAdversarialImprovement(original, modified, detectorTarget = 'general') {
|
||||
const originalFingerprints = detectAIFingerprints(original);
|
||||
const modifiedFingerprints = detectAIFingerprints(modified);
|
||||
|
||||
const originalDiversity = analyzeLexicalDiversity(original);
|
||||
const modifiedDiversity = analyzeLexicalDiversity(modified);
|
||||
|
||||
const originalVariation = analyzeSentenceVariation(original);
|
||||
const modifiedVariation = analyzeSentenceVariation(modified);
|
||||
|
||||
const fingerprintReduction = originalFingerprints.totalScore - modifiedFingerprints.totalScore;
|
||||
const diversityIncrease = modifiedDiversity - originalDiversity;
|
||||
const variationIncrease = modifiedVariation - originalVariation;
|
||||
|
||||
const improvementScore = (
|
||||
fingerprintReduction * 0.4 +
|
||||
diversityIncrease * 0.3 +
|
||||
variationIncrease * 0.3
|
||||
);
|
||||
|
||||
return {
|
||||
fingerprintReduction,
|
||||
diversityIncrease,
|
||||
variationIncrease,
|
||||
improvementScore: Math.round(improvementScore * 100) / 100,
|
||||
modificationRate: compareContentModification(original, modified),
|
||||
recommendation: getImprovementRecommendation(improvementScore, detectorTarget)
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* UTILITAIRES DE CONTENU
|
||||
*/
|
||||
|
||||
/**
|
||||
* Nettoyer contenu adversarial généré
|
||||
*/
|
||||
function cleanAdversarialContent(content) {
|
||||
if (!content || typeof content !== 'string') return content;
|
||||
|
||||
let cleaned = content;
|
||||
|
||||
// Supprimer préfixes de génération
|
||||
cleaned = cleaned.replace(/^(voici\s+)?le\s+contenu\s+(réécrit|amélioré|modifié)[:\s]*/gi, '');
|
||||
cleaned = cleaned.replace(/^(bon,?\s*)?(alors,?\s*)?(pour\s+)?(ce\s+contenu[,\s]*)?/gi, '');
|
||||
|
||||
// Nettoyer formatage
|
||||
cleaned = cleaned.replace(/\*\*[^*]+\*\*/g, ''); // Gras markdown
|
||||
cleaned = cleaned.replace(/\s{2,}/g, ' '); // Espaces multiples
|
||||
cleaned = cleaned.replace(/([.!?])\s*([.!?])/g, '$1 '); // Double ponctuation
|
||||
|
||||
// Nettoyer début/fin
|
||||
cleaned = cleaned.trim();
|
||||
cleaned = cleaned.replace(/^[,.\s]+/, '');
|
||||
cleaned = cleaned.replace(/[,\s]+$/, '');
|
||||
|
||||
return cleaned;
|
||||
}
|
||||
|
||||
/**
|
||||
* Valider qualité du contenu adversarial
|
||||
*/
|
||||
function validateAdversarialContent(content, originalContent, minLength = 10, maxModificationRate = 90) {
|
||||
const validation = {
|
||||
isValid: true,
|
||||
issues: [],
|
||||
suggestions: []
|
||||
};
|
||||
|
||||
// Vérifier longueur minimale
|
||||
if (!content || content.length < minLength) {
|
||||
validation.isValid = false;
|
||||
validation.issues.push('Contenu trop court');
|
||||
validation.suggestions.push('Augmenter la longueur du contenu généré');
|
||||
}
|
||||
|
||||
// Vérifier cohérence
|
||||
if (originalContent) {
|
||||
const modificationRate = compareContentModification(originalContent, content);
|
||||
|
||||
if (modificationRate > maxModificationRate) {
|
||||
validation.issues.push('Modification trop importante');
|
||||
validation.suggestions.push('Réduire l\'intensité adversariale pour préserver le sens');
|
||||
}
|
||||
|
||||
if (modificationRate < 5) {
|
||||
validation.issues.push('Modification insuffisante');
|
||||
validation.suggestions.push('Augmenter l\'intensité adversariale');
|
||||
}
|
||||
}
|
||||
|
||||
// Vérifier empreintes IA résiduelles
|
||||
const fingerprints = detectAIFingerprints(content);
|
||||
if (fingerprints.totalScore > 15) {
|
||||
validation.issues.push('Empreintes IA encore présentes');
|
||||
validation.suggestions.push('Appliquer post-processing anti-fingerprints');
|
||||
}
|
||||
|
||||
return validation;
|
||||
}
|
||||
|
||||
/**
|
||||
* UTILITAIRES TECHNIQUES
|
||||
*/
|
||||
|
||||
/**
|
||||
* Chunk array avec préservation des paires
|
||||
*/
|
||||
function chunkArraySmart(array, size, preservePairs = false) {
|
||||
if (!preservePairs) {
|
||||
return chunkArray(array, size);
|
||||
}
|
||||
|
||||
const chunks = [];
|
||||
for (let i = 0; i < array.length; i += size) {
|
||||
let chunk = array.slice(i, i + size);
|
||||
|
||||
// Si on coupe au milieu d'une paire (nombre impair), ajuster
|
||||
if (chunk.length % 2 !== 0 && i + size < array.length) {
|
||||
chunk = array.slice(i, i + size - 1);
|
||||
}
|
||||
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
return chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* Chunk array standard
|
||||
*/
|
||||
function chunkArray(array, size) {
|
||||
const chunks = [];
|
||||
for (let i = 0; i < array.length; i += size) {
|
||||
chunks.push(array.slice(i, i + size));
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sleep avec variation
|
||||
*/
|
||||
function sleep(ms, variation = 0.2) {
|
||||
const actualMs = ms + (Math.random() - 0.5) * ms * variation;
|
||||
return new Promise(resolve => setTimeout(resolve, Math.max(100, actualMs)));
|
||||
}
|
||||
|
||||
/**
|
||||
* RECOMMANDATIONS
|
||||
*/
|
||||
|
||||
/**
|
||||
* Obtenir recommandation d'amélioration
|
||||
*/
|
||||
function getImprovementRecommendation(score, detectorTarget) {
|
||||
const recommendations = {
|
||||
general: {
|
||||
good: "Bon niveau d'amélioration générale",
|
||||
medium: "Appliquer techniques de variation syntaxique",
|
||||
poor: "Nécessite post-processing intensif"
|
||||
},
|
||||
gptZero: {
|
||||
good: "Imprévisibilité suffisante contre GPTZero",
|
||||
medium: "Ajouter plus de ruptures narratives",
|
||||
poor: "Intensifier variation syntaxique et lexicale"
|
||||
},
|
||||
originality: {
|
||||
good: "Créativité suffisante contre Originality",
|
||||
medium: "Enrichir diversité sémantique",
|
||||
poor: "Réinventer présentation des informations"
|
||||
}
|
||||
};
|
||||
|
||||
const category = score > 10 ? 'good' : score > 5 ? 'medium' : 'poor';
|
||||
return recommendations[detectorTarget]?.[category] || recommendations.general[category];
|
||||
}
|
||||
|
||||
/**
|
||||
* MÉTRIQUES ET STATS
|
||||
*/
|
||||
|
||||
/**
|
||||
* Calculer score composite anti-détection
|
||||
*/
|
||||
function calculateAntiDetectionScore(content, detectorTarget = 'general') {
|
||||
const diversity = analyzeLexicalDiversity(content);
|
||||
const variation = analyzeSentenceVariation(content);
|
||||
const fingerprints = detectAIFingerprints(content);
|
||||
const uniformity = analyzeStructuralUniformity(content);
|
||||
|
||||
const baseScore = (diversity * 0.3 + variation * 0.3 + (100 - fingerprints.totalScore) * 0.2 + (100 - uniformity) * 0.2);
|
||||
|
||||
// Ajustements selon détecteur
|
||||
let adjustedScore = baseScore;
|
||||
switch (detectorTarget) {
|
||||
case 'gptZero':
|
||||
adjustedScore = baseScore * (variation / 100) * 1.2; // Favorise variation
|
||||
break;
|
||||
case 'originality':
|
||||
adjustedScore = baseScore * (diversity / 100) * 1.2; // Favorise diversité
|
||||
break;
|
||||
}
|
||||
|
||||
return Math.min(100, Math.max(0, Math.round(adjustedScore)));
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
// Analyseurs
|
||||
analyzeLexicalDiversity,
|
||||
analyzeSentenceVariation,
|
||||
detectAIFingerprints,
|
||||
analyzeStructuralUniformity,
|
||||
|
||||
// Comparateurs
|
||||
compareContentModification,
|
||||
evaluateAdversarialImprovement,
|
||||
|
||||
// Utilitaires contenu
|
||||
cleanAdversarialContent,
|
||||
validateAdversarialContent,
|
||||
|
||||
// Utilitaires techniques
|
||||
chunkArray,
|
||||
chunkArraySmart,
|
||||
sleep,
|
||||
|
||||
// Métriques
|
||||
calculateAntiDetectionScore,
|
||||
getImprovementRecommendation
|
||||
};
|
||||
466
lib/adversarial-generation/ComparisonFramework.js
Normal file
466
lib/adversarial-generation/ComparisonFramework.js
Normal file
@ -0,0 +1,466 @@
|
||||
// ========================================
|
||||
// FRAMEWORK DE COMPARAISON ADVERSARIAL
|
||||
// Responsabilité: Comparer pipelines normales vs adversariales
|
||||
// Utilisation: A/B testing et validation efficacité anti-détection
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
// Pipelines à comparer
|
||||
const { generateWithContext } = require('../ContentGeneration'); // Pipeline normale
|
||||
const { generateWithAdversarialContext, compareAdversarialStrategies } = require('./ContentGenerationAdversarial'); // Pipeline adversariale
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - COMPARAISON A/B PIPELINE
|
||||
* Compare pipeline normale vs adversariale sur même input
|
||||
*/
|
||||
async function compareNormalVsAdversarial(input, options = {}) {
|
||||
return await tracer.run('ComparisonFramework.compareNormalVsAdversarial()', async () => {
|
||||
const {
|
||||
hierarchy,
|
||||
csvData,
|
||||
adversarialConfig = {},
|
||||
runBothPipelines = true,
|
||||
analyzeContent = true
|
||||
} = input;
|
||||
|
||||
const {
|
||||
detectorTarget = 'general',
|
||||
intensity = 1.0,
|
||||
iterations = 1
|
||||
} = options;
|
||||
|
||||
await tracer.annotate({
|
||||
comparisonType: 'normal_vs_adversarial',
|
||||
detectorTarget,
|
||||
intensity,
|
||||
iterations,
|
||||
elementsCount: Object.keys(hierarchy).length
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🆚 COMPARAISON A/B: Pipeline normale vs adversariale`, 'INFO');
|
||||
logSh(` 🎯 Détecteur cible: ${detectorTarget} | Intensité: ${intensity} | Itérations: ${iterations}`, 'INFO');
|
||||
|
||||
const results = {
|
||||
normal: null,
|
||||
adversarial: null,
|
||||
comparison: null,
|
||||
iterations: []
|
||||
};
|
||||
|
||||
try {
|
||||
for (let i = 0; i < iterations; i++) {
|
||||
logSh(`🔄 Itération ${i + 1}/${iterations}`, 'INFO');
|
||||
|
||||
const iterationResults = {
|
||||
iteration: i + 1,
|
||||
normal: null,
|
||||
adversarial: null,
|
||||
metrics: {}
|
||||
};
|
||||
|
||||
// ========================================
|
||||
// PIPELINE NORMALE
|
||||
// ========================================
|
||||
if (runBothPipelines) {
|
||||
logSh(` 📊 Génération pipeline normale...`, 'DEBUG');
|
||||
|
||||
const normalStartTime = Date.now();
|
||||
try {
|
||||
const normalResult = await generateWithContext(hierarchy, csvData, {
|
||||
technical: true,
|
||||
transitions: true,
|
||||
style: true
|
||||
});
|
||||
|
||||
iterationResults.normal = {
|
||||
success: true,
|
||||
content: normalResult,
|
||||
duration: Date.now() - normalStartTime,
|
||||
elementsCount: Object.keys(normalResult).length
|
||||
};
|
||||
|
||||
logSh(` ✅ Pipeline normale: ${iterationResults.normal.elementsCount} éléments (${iterationResults.normal.duration}ms)`, 'DEBUG');
|
||||
|
||||
} catch (error) {
|
||||
iterationResults.normal = {
|
||||
success: false,
|
||||
error: error.message,
|
||||
duration: Date.now() - normalStartTime
|
||||
};
|
||||
|
||||
logSh(` ❌ Pipeline normale échouée: ${error.message}`, 'ERROR');
|
||||
}
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// PIPELINE ADVERSARIALE
|
||||
// ========================================
|
||||
logSh(` 🎯 Génération pipeline adversariale...`, 'DEBUG');
|
||||
|
||||
const adversarialStartTime = Date.now();
|
||||
try {
|
||||
const adversarialResult = await generateWithAdversarialContext({
|
||||
hierarchy,
|
||||
csvData,
|
||||
adversarialConfig: {
|
||||
detectorTarget,
|
||||
intensity,
|
||||
enableAllSteps: true,
|
||||
...adversarialConfig
|
||||
}
|
||||
});
|
||||
|
||||
iterationResults.adversarial = {
|
||||
success: true,
|
||||
content: adversarialResult.content,
|
||||
stats: adversarialResult.stats,
|
||||
adversarialMetrics: adversarialResult.adversarialMetrics,
|
||||
duration: Date.now() - adversarialStartTime,
|
||||
elementsCount: Object.keys(adversarialResult.content).length
|
||||
};
|
||||
|
||||
logSh(` ✅ Pipeline adversariale: ${iterationResults.adversarial.elementsCount} éléments (${iterationResults.adversarial.duration}ms)`, 'DEBUG');
|
||||
logSh(` 📊 Score efficacité: ${adversarialResult.adversarialMetrics.effectivenessScore.toFixed(2)}%`, 'DEBUG');
|
||||
|
||||
} catch (error) {
|
||||
iterationResults.adversarial = {
|
||||
success: false,
|
||||
error: error.message,
|
||||
duration: Date.now() - adversarialStartTime
|
||||
};
|
||||
|
||||
logSh(` ❌ Pipeline adversariale échouée: ${error.message}`, 'ERROR');
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// ANALYSE COMPARATIVE ITÉRATION
|
||||
// ========================================
|
||||
if (analyzeContent && iterationResults.normal?.success && iterationResults.adversarial?.success) {
|
||||
iterationResults.metrics = analyzeContentComparison(
|
||||
iterationResults.normal.content,
|
||||
iterationResults.adversarial.content
|
||||
);
|
||||
|
||||
logSh(` 📈 Diversité: Normal=${iterationResults.metrics.diversity.normal.toFixed(2)}% | Adversarial=${iterationResults.metrics.diversity.adversarial.toFixed(2)}%`, 'DEBUG');
|
||||
}
|
||||
|
||||
results.iterations.push(iterationResults);
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// CONSOLIDATION RÉSULTATS
|
||||
// ========================================
|
||||
const totalDuration = Date.now() - startTime;
|
||||
|
||||
// Prendre les meilleurs résultats ou derniers si une seule itération
|
||||
const lastIteration = results.iterations[results.iterations.length - 1];
|
||||
results.normal = lastIteration.normal;
|
||||
results.adversarial = lastIteration.adversarial;
|
||||
|
||||
// Analyse comparative globale
|
||||
results.comparison = generateGlobalComparison(results.iterations, options);
|
||||
|
||||
logSh(`🆚 COMPARAISON TERMINÉE: ${iterations} itérations (${totalDuration}ms)`, 'INFO');
|
||||
|
||||
if (results.comparison.winner) {
|
||||
logSh(`🏆 Gagnant: ${results.comparison.winner} (score: ${results.comparison.bestScore.toFixed(2)})`, 'INFO');
|
||||
}
|
||||
|
||||
await tracer.event('Comparaison A/B terminée', {
|
||||
iterations,
|
||||
winner: results.comparison.winner,
|
||||
totalDuration
|
||||
});
|
||||
|
||||
return results;
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ COMPARAISON A/B ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
throw new Error(`ComparisonFramework failed: ${error.message}`);
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* COMPARAISON MULTI-DÉTECTEURS
|
||||
*/
|
||||
async function compareMultiDetectors(hierarchy, csvData, detectorTargets = ['general', 'gptZero', 'originality']) {
|
||||
logSh(`🎯 COMPARAISON MULTI-DÉTECTEURS: ${detectorTargets.length} stratégies`, 'INFO');
|
||||
|
||||
const results = {};
|
||||
const startTime = Date.now();
|
||||
|
||||
for (const detector of detectorTargets) {
|
||||
logSh(` 🔍 Test détecteur: ${detector}`, 'DEBUG');
|
||||
|
||||
try {
|
||||
const comparison = await compareNormalVsAdversarial({
|
||||
hierarchy,
|
||||
csvData,
|
||||
adversarialConfig: { detectorTarget: detector }
|
||||
}, {
|
||||
detectorTarget: detector,
|
||||
intensity: 1.0,
|
||||
iterations: 1
|
||||
});
|
||||
|
||||
results[detector] = {
|
||||
success: true,
|
||||
comparison,
|
||||
effectivenessGain: comparison.adversarial?.adversarialMetrics?.effectivenessScore || 0
|
||||
};
|
||||
|
||||
logSh(` ✅ ${detector}: +${results[detector].effectivenessGain.toFixed(2)}% efficacité`, 'DEBUG');
|
||||
|
||||
} catch (error) {
|
||||
results[detector] = {
|
||||
success: false,
|
||||
error: error.message,
|
||||
effectivenessGain: 0
|
||||
};
|
||||
|
||||
logSh(` ❌ ${detector}: Échec - ${error.message}`, 'ERROR');
|
||||
}
|
||||
}
|
||||
|
||||
// Analyse du meilleur détecteur
|
||||
const bestDetector = Object.keys(results).reduce((best, current) => {
|
||||
if (!results[best]?.success) return current;
|
||||
if (!results[current]?.success) return best;
|
||||
return results[current].effectivenessGain > results[best].effectivenessGain ? current : best;
|
||||
});
|
||||
|
||||
const totalDuration = Date.now() - startTime;
|
||||
|
||||
logSh(`🎯 MULTI-DÉTECTEURS TERMINÉ: Meilleur=${bestDetector} (${totalDuration}ms)`, 'INFO');
|
||||
|
||||
return {
|
||||
results,
|
||||
bestDetector,
|
||||
bestScore: results[bestDetector]?.effectivenessGain || 0,
|
||||
totalDuration
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* BENCHMARK PERFORMANCE
|
||||
*/
|
||||
async function benchmarkPerformance(hierarchy, csvData, configurations = []) {
|
||||
const defaultConfigs = [
|
||||
{ name: 'Normal', type: 'normal' },
|
||||
{ name: 'Simple Adversarial', type: 'adversarial', detectorTarget: 'general', intensity: 0.5 },
|
||||
{ name: 'Intense Adversarial', type: 'adversarial', detectorTarget: 'gptZero', intensity: 1.0 },
|
||||
{ name: 'Max Adversarial', type: 'adversarial', detectorTarget: 'originality', intensity: 1.5 }
|
||||
];
|
||||
|
||||
const configs = configurations.length > 0 ? configurations : defaultConfigs;
|
||||
|
||||
logSh(`⚡ BENCHMARK PERFORMANCE: ${configs.length} configurations`, 'INFO');
|
||||
|
||||
const results = [];
|
||||
|
||||
for (const config of configs) {
|
||||
logSh(` 🔧 Test: ${config.name}`, 'DEBUG');
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
try {
|
||||
let result;
|
||||
|
||||
if (config.type === 'normal') {
|
||||
result = await generateWithContext(hierarchy, csvData);
|
||||
} else {
|
||||
const adversarialResult = await generateWithAdversarialContext({
|
||||
hierarchy,
|
||||
csvData,
|
||||
adversarialConfig: {
|
||||
detectorTarget: config.detectorTarget || 'general',
|
||||
intensity: config.intensity || 1.0
|
||||
}
|
||||
});
|
||||
result = adversarialResult.content;
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
|
||||
results.push({
|
||||
name: config.name,
|
||||
type: config.type,
|
||||
success: true,
|
||||
duration,
|
||||
elementsCount: Object.keys(result).length,
|
||||
performance: Object.keys(result).length / (duration / 1000) // éléments par seconde
|
||||
});
|
||||
|
||||
logSh(` ✅ ${config.name}: ${Object.keys(result).length} éléments (${duration}ms)`, 'DEBUG');
|
||||
|
||||
} catch (error) {
|
||||
results.push({
|
||||
name: config.name,
|
||||
type: config.type,
|
||||
success: false,
|
||||
error: error.message,
|
||||
duration: Date.now() - startTime
|
||||
});
|
||||
|
||||
logSh(` ❌ ${config.name}: Échec - ${error.message}`, 'ERROR');
|
||||
}
|
||||
}
|
||||
|
||||
// Analyser les résultats
|
||||
const successfulResults = results.filter(r => r.success);
|
||||
const fastest = successfulResults.reduce((best, current) =>
|
||||
current.duration < best.duration ? current : best, successfulResults[0]);
|
||||
const mostEfficient = successfulResults.reduce((best, current) =>
|
||||
current.performance > best.performance ? current : best, successfulResults[0]);
|
||||
|
||||
logSh(`⚡ BENCHMARK TERMINÉ: Fastest=${fastest?.name} | Most efficient=${mostEfficient?.name}`, 'INFO');
|
||||
|
||||
return {
|
||||
results,
|
||||
fastest,
|
||||
mostEfficient,
|
||||
summary: {
|
||||
totalConfigs: configs.length,
|
||||
successful: successfulResults.length,
|
||||
failed: results.length - successfulResults.length
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
/**
|
||||
* Analyser différences de contenu entre normal et adversarial
|
||||
*/
|
||||
function analyzeContentComparison(normalContent, adversarialContent) {
|
||||
const metrics = {
|
||||
diversity: {
|
||||
normal: analyzeDiversityScore(Object.values(normalContent).join(' ')),
|
||||
adversarial: analyzeDiversityScore(Object.values(adversarialContent).join(' '))
|
||||
},
|
||||
length: {
|
||||
normal: Object.values(normalContent).join(' ').length,
|
||||
adversarial: Object.values(adversarialContent).join(' ').length
|
||||
},
|
||||
elementsCount: {
|
||||
normal: Object.keys(normalContent).length,
|
||||
adversarial: Object.keys(adversarialContent).length
|
||||
},
|
||||
differences: compareContentElements(normalContent, adversarialContent)
|
||||
};
|
||||
|
||||
return metrics;
|
||||
}
|
||||
|
||||
/**
|
||||
* Score de diversité lexicale
|
||||
*/
|
||||
function analyzeDiversityScore(content) {
|
||||
if (!content || typeof content !== 'string') return 0;
|
||||
|
||||
const words = content.split(/\s+/).filter(w => w.length > 2);
|
||||
if (words.length === 0) return 0;
|
||||
|
||||
const uniqueWords = [...new Set(words.map(w => w.toLowerCase()))];
|
||||
return (uniqueWords.length / words.length) * 100;
|
||||
}
|
||||
|
||||
/**
|
||||
* Comparer éléments de contenu
|
||||
*/
|
||||
function compareContentElements(normalContent, adversarialContent) {
|
||||
const differences = {
|
||||
modified: 0,
|
||||
identical: 0,
|
||||
totalElements: Math.max(Object.keys(normalContent).length, Object.keys(adversarialContent).length)
|
||||
};
|
||||
|
||||
const allTags = [...new Set([...Object.keys(normalContent), ...Object.keys(adversarialContent)])];
|
||||
|
||||
allTags.forEach(tag => {
|
||||
if (normalContent[tag] && adversarialContent[tag]) {
|
||||
if (normalContent[tag] === adversarialContent[tag]) {
|
||||
differences.identical++;
|
||||
} else {
|
||||
differences.modified++;
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
differences.modificationRate = differences.totalElements > 0 ?
|
||||
(differences.modified / differences.totalElements) * 100 : 0;
|
||||
|
||||
return differences;
|
||||
}
|
||||
|
||||
/**
|
||||
* Générer analyse comparative globale
|
||||
*/
|
||||
function generateGlobalComparison(iterations, options) {
|
||||
const successfulIterations = iterations.filter(it =>
|
||||
it.normal?.success && it.adversarial?.success);
|
||||
|
||||
if (successfulIterations.length === 0) {
|
||||
return {
|
||||
winner: null,
|
||||
bestScore: 0,
|
||||
summary: 'Aucune itération réussie'
|
||||
};
|
||||
}
|
||||
|
||||
// Moyenner les métriques
|
||||
const avgMetrics = {
|
||||
diversity: {
|
||||
normal: 0,
|
||||
adversarial: 0
|
||||
},
|
||||
performance: {
|
||||
normal: 0,
|
||||
adversarial: 0
|
||||
}
|
||||
};
|
||||
|
||||
successfulIterations.forEach(iteration => {
|
||||
if (iteration.metrics) {
|
||||
avgMetrics.diversity.normal += iteration.metrics.diversity.normal;
|
||||
avgMetrics.diversity.adversarial += iteration.metrics.diversity.adversarial;
|
||||
}
|
||||
avgMetrics.performance.normal += iteration.normal.elementsCount / (iteration.normal.duration / 1000);
|
||||
avgMetrics.performance.adversarial += iteration.adversarial.elementsCount / (iteration.adversarial.duration / 1000);
|
||||
});
|
||||
|
||||
const iterCount = successfulIterations.length;
|
||||
avgMetrics.diversity.normal /= iterCount;
|
||||
avgMetrics.diversity.adversarial /= iterCount;
|
||||
avgMetrics.performance.normal /= iterCount;
|
||||
avgMetrics.performance.adversarial /= iterCount;
|
||||
|
||||
// Déterminer le gagnant
|
||||
const diversityGain = avgMetrics.diversity.adversarial - avgMetrics.diversity.normal;
|
||||
const performanceLoss = avgMetrics.performance.normal - avgMetrics.performance.adversarial;
|
||||
|
||||
// Score composite (favorise diversité avec pénalité performance)
|
||||
const adversarialScore = diversityGain * 2 - (performanceLoss * 0.5);
|
||||
|
||||
return {
|
||||
winner: adversarialScore > 5 ? 'adversarial' : 'normal',
|
||||
bestScore: Math.max(avgMetrics.diversity.normal, avgMetrics.diversity.adversarial),
|
||||
diversityGain,
|
||||
performanceLoss,
|
||||
avgMetrics,
|
||||
summary: `Diversité: +${diversityGain.toFixed(2)}%, Performance: ${performanceLoss > 0 ? '-' : '+'}${Math.abs(performanceLoss).toFixed(2)} elem/s`
|
||||
};
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
compareNormalVsAdversarial, // ← MAIN ENTRY POINT
|
||||
compareMultiDetectors,
|
||||
benchmarkPerformance,
|
||||
analyzeContentComparison,
|
||||
analyzeDiversityScore
|
||||
};
|
||||
408
lib/adversarial-generation/ContentGenerationAdversarial.js
Normal file
408
lib/adversarial-generation/ContentGenerationAdversarial.js
Normal file
@ -0,0 +1,408 @@
|
||||
// ========================================
|
||||
// ORCHESTRATEUR CONTENU ADVERSARIAL - NIVEAU 3
|
||||
// Responsabilité: Pipeline complet de génération anti-détection
|
||||
// Architecture: 4 étapes adversariales séparées et modulaires
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
// Importation des 4 étapes adversariales
|
||||
const { generateInitialContentAdversarial } = require('./AdversarialInitialGeneration');
|
||||
const { enhanceTechnicalTermsAdversarial } = require('./AdversarialTechnicalEnhancement');
|
||||
const { enhanceTransitionsAdversarial } = require('./AdversarialTransitionEnhancement');
|
||||
const { applyPersonalityStyleAdversarial } = require('./AdversarialStyleEnhancement');
|
||||
|
||||
// Importation du moteur adversarial
|
||||
const { createAdversarialPrompt, getSupportedDetectors, analyzePromptEffectiveness } = require('./AdversarialPromptEngine');
|
||||
const { DetectorStrategyManager } = require('./DetectorStrategies');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - PIPELINE ADVERSARIAL COMPLET
|
||||
* Input: { hierarchy, csvData, adversarialConfig, context }
|
||||
* Output: { content, stats, debug, adversarialMetrics }
|
||||
*/
|
||||
async function generateWithAdversarialContext(input) {
|
||||
return await tracer.run('ContentGenerationAdversarial.generateWithAdversarialContext()', async () => {
|
||||
const { hierarchy, csvData, adversarialConfig = {}, context = {} } = input;
|
||||
|
||||
// Configuration adversariale par défaut
|
||||
const config = {
|
||||
detectorTarget: adversarialConfig.detectorTarget || 'general',
|
||||
intensity: adversarialConfig.intensity || 1.0,
|
||||
enableAdaptiveStrategy: adversarialConfig.enableAdaptiveStrategy !== false,
|
||||
contextualMode: adversarialConfig.contextualMode !== false,
|
||||
enableAllSteps: adversarialConfig.enableAllSteps !== false,
|
||||
// Configuration par étape
|
||||
steps: {
|
||||
initial: adversarialConfig.steps?.initial !== false,
|
||||
technical: adversarialConfig.steps?.technical !== false,
|
||||
transitions: adversarialConfig.steps?.transitions !== false,
|
||||
style: adversarialConfig.steps?.style !== false
|
||||
},
|
||||
...adversarialConfig
|
||||
};
|
||||
|
||||
await tracer.annotate({
|
||||
adversarialPipeline: true,
|
||||
detectorTarget: config.detectorTarget,
|
||||
intensity: config.intensity,
|
||||
enabledSteps: Object.keys(config.steps).filter(k => config.steps[k]),
|
||||
elementsCount: Object.keys(hierarchy).length,
|
||||
mc0: csvData.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🎯 PIPELINE ADVERSARIAL NIVEAU 3: Anti-détection ${config.detectorTarget}`, 'INFO');
|
||||
logSh(` 🎚️ Intensité: ${config.intensity.toFixed(2)} | Étapes: ${Object.keys(config.steps).filter(k => config.steps[k]).join(', ')}`, 'INFO');
|
||||
|
||||
// Initialiser manager détecteur global
|
||||
const detectorManager = new DetectorStrategyManager(config.detectorTarget);
|
||||
|
||||
try {
|
||||
let currentContent = {};
|
||||
let pipelineStats = {
|
||||
steps: {},
|
||||
totalDuration: 0,
|
||||
elementsProcessed: 0,
|
||||
adversarialMetrics: {
|
||||
promptsGenerated: 0,
|
||||
detectorTarget: config.detectorTarget,
|
||||
averageIntensity: config.intensity,
|
||||
effectivenessScore: 0
|
||||
}
|
||||
};
|
||||
|
||||
// ========================================
|
||||
// ÉTAPE 1: GÉNÉRATION INITIALE ADVERSARIALE
|
||||
// ========================================
|
||||
if (config.steps.initial) {
|
||||
logSh(`🎯 ÉTAPE 1/4: Génération initiale adversariale`, 'INFO');
|
||||
|
||||
const step1Result = await generateInitialContentAdversarial({
|
||||
hierarchy,
|
||||
csvData,
|
||||
context,
|
||||
adversarialConfig: config
|
||||
});
|
||||
|
||||
currentContent = step1Result.content;
|
||||
pipelineStats.steps.initial = step1Result.stats;
|
||||
pipelineStats.adversarialMetrics.promptsGenerated += Object.keys(currentContent).length;
|
||||
|
||||
logSh(`✅ ÉTAPE 1/4: ${step1Result.stats.generated} éléments générés (${step1Result.stats.duration}ms)`, 'INFO');
|
||||
} else {
|
||||
logSh(`⏭️ ÉTAPE 1/4: Ignorée (configuration)`, 'INFO');
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// ÉTAPE 2: ENHANCEMENT TECHNIQUE ADVERSARIAL
|
||||
// ========================================
|
||||
if (config.steps.technical && Object.keys(currentContent).length > 0) {
|
||||
logSh(`🎯 ÉTAPE 2/4: Enhancement technique adversarial`, 'INFO');
|
||||
|
||||
const step2Result = await enhanceTechnicalTermsAdversarial({
|
||||
content: currentContent,
|
||||
csvData,
|
||||
context,
|
||||
adversarialConfig: config
|
||||
});
|
||||
|
||||
currentContent = step2Result.content;
|
||||
pipelineStats.steps.technical = step2Result.stats;
|
||||
pipelineStats.adversarialMetrics.promptsGenerated += step2Result.stats.enhanced;
|
||||
|
||||
logSh(`✅ ÉTAPE 2/4: ${step2Result.stats.enhanced} éléments améliorés (${step2Result.stats.duration}ms)`, 'INFO');
|
||||
} else {
|
||||
logSh(`⏭️ ÉTAPE 2/4: Ignorée (configuration ou pas de contenu)`, 'INFO');
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// ÉTAPE 3: ENHANCEMENT TRANSITIONS ADVERSARIAL
|
||||
// ========================================
|
||||
if (config.steps.transitions && Object.keys(currentContent).length > 0) {
|
||||
logSh(`🎯 ÉTAPE 3/4: Enhancement transitions adversarial`, 'INFO');
|
||||
|
||||
const step3Result = await enhanceTransitionsAdversarial({
|
||||
content: currentContent,
|
||||
csvData,
|
||||
context,
|
||||
adversarialConfig: config
|
||||
});
|
||||
|
||||
currentContent = step3Result.content;
|
||||
pipelineStats.steps.transitions = step3Result.stats;
|
||||
pipelineStats.adversarialMetrics.promptsGenerated += step3Result.stats.enhanced;
|
||||
|
||||
logSh(`✅ ÉTAPE 3/4: ${step3Result.stats.enhanced} éléments fluidifiés (${step3Result.stats.duration}ms)`, 'INFO');
|
||||
} else {
|
||||
logSh(`⏭️ ÉTAPE 3/4: Ignorée (configuration ou pas de contenu)`, 'INFO');
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// ÉTAPE 4: ENHANCEMENT STYLE ADVERSARIAL
|
||||
// ========================================
|
||||
if (config.steps.style && Object.keys(currentContent).length > 0 && csvData.personality) {
|
||||
logSh(`🎯 ÉTAPE 4/4: Enhancement style adversarial`, 'INFO');
|
||||
|
||||
const step4Result = await applyPersonalityStyleAdversarial({
|
||||
content: currentContent,
|
||||
csvData,
|
||||
context,
|
||||
adversarialConfig: config
|
||||
});
|
||||
|
||||
currentContent = step4Result.content;
|
||||
pipelineStats.steps.style = step4Result.stats;
|
||||
pipelineStats.adversarialMetrics.promptsGenerated += step4Result.stats.enhanced;
|
||||
|
||||
logSh(`✅ ÉTAPE 4/4: ${step4Result.stats.enhanced} éléments stylisés (${step4Result.stats.duration}ms)`, 'INFO');
|
||||
} else {
|
||||
logSh(`⏭️ ÉTAPE 4/4: Ignorée (configuration, pas de contenu ou pas de personnalité)`, 'INFO');
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// FINALISATION PIPELINE
|
||||
// ========================================
|
||||
const totalDuration = Date.now() - startTime;
|
||||
pipelineStats.totalDuration = totalDuration;
|
||||
pipelineStats.elementsProcessed = Object.keys(currentContent).length;
|
||||
|
||||
// Calculer score d'efficacité adversarial
|
||||
pipelineStats.adversarialMetrics.effectivenessScore = calculateAdversarialEffectiveness(
|
||||
pipelineStats,
|
||||
config,
|
||||
currentContent
|
||||
);
|
||||
|
||||
logSh(`🎯 PIPELINE ADVERSARIAL TERMINÉ: ${pipelineStats.elementsProcessed} éléments (${totalDuration}ms)`, 'INFO');
|
||||
logSh(` 📊 Score efficacité: ${pipelineStats.adversarialMetrics.effectivenessScore.toFixed(2)}%`, 'INFO');
|
||||
|
||||
await tracer.event(`Pipeline adversarial terminé`, {
|
||||
...pipelineStats,
|
||||
detectorTarget: config.detectorTarget,
|
||||
intensity: config.intensity
|
||||
});
|
||||
|
||||
return {
|
||||
content: currentContent,
|
||||
stats: pipelineStats,
|
||||
debug: {
|
||||
adversarialPipeline: true,
|
||||
detectorTarget: config.detectorTarget,
|
||||
intensity: config.intensity,
|
||||
stepsExecuted: Object.keys(config.steps).filter(k => config.steps[k]),
|
||||
detectorManager: detectorManager.getStrategyInfo()
|
||||
},
|
||||
adversarialMetrics: pipelineStats.adversarialMetrics
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ PIPELINE ADVERSARIAL ÉCHOUÉ après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
throw new Error(`AdversarialContentGeneration failed: ${error.message}`);
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* MODE SIMPLE ADVERSARIAL (équivalent à generateSimple mais adversarial)
|
||||
*/
|
||||
async function generateSimpleAdversarial(hierarchy, csvData, adversarialConfig = {}) {
|
||||
return await generateWithAdversarialContext({
|
||||
hierarchy,
|
||||
csvData,
|
||||
adversarialConfig: {
|
||||
detectorTarget: 'general',
|
||||
intensity: 0.8,
|
||||
enableAllSteps: false,
|
||||
steps: {
|
||||
initial: true,
|
||||
technical: false,
|
||||
transitions: false,
|
||||
style: true
|
||||
},
|
||||
...adversarialConfig
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* MODE AVANCÉ ADVERSARIAL (configuration personnalisée)
|
||||
*/
|
||||
async function generateAdvancedAdversarial(hierarchy, csvData, options = {}) {
|
||||
const {
|
||||
detectorTarget = 'general',
|
||||
intensity = 1.0,
|
||||
technical = true,
|
||||
transitions = true,
|
||||
style = true,
|
||||
...otherConfig
|
||||
} = options;
|
||||
|
||||
return await generateWithAdversarialContext({
|
||||
hierarchy,
|
||||
csvData,
|
||||
adversarialConfig: {
|
||||
detectorTarget,
|
||||
intensity,
|
||||
enableAdaptiveStrategy: true,
|
||||
contextualMode: true,
|
||||
steps: {
|
||||
initial: true,
|
||||
technical,
|
||||
transitions,
|
||||
style
|
||||
},
|
||||
...otherConfig
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* DIAGNOSTIC PIPELINE ADVERSARIAL
|
||||
*/
|
||||
async function diagnosticAdversarialPipeline(hierarchy, csvData, detectorTargets = ['general', 'gptZero', 'originality']) {
|
||||
logSh(`🔬 DIAGNOSTIC ADVERSARIAL: Testing ${detectorTargets.length} détecteurs`, 'INFO');
|
||||
|
||||
const results = {};
|
||||
|
||||
for (const target of detectorTargets) {
|
||||
try {
|
||||
logSh(` 🎯 Test détecteur: ${target}`, 'DEBUG');
|
||||
|
||||
const result = await generateWithAdversarialContext({
|
||||
hierarchy,
|
||||
csvData,
|
||||
adversarialConfig: {
|
||||
detectorTarget: target,
|
||||
intensity: 1.0,
|
||||
enableAllSteps: true
|
||||
}
|
||||
});
|
||||
|
||||
results[target] = {
|
||||
success: true,
|
||||
content: result.content,
|
||||
stats: result.stats,
|
||||
effectivenessScore: result.adversarialMetrics.effectivenessScore
|
||||
};
|
||||
|
||||
logSh(` ✅ ${target}: Score ${result.adversarialMetrics.effectivenessScore.toFixed(2)}%`, 'DEBUG');
|
||||
|
||||
} catch (error) {
|
||||
results[target] = {
|
||||
success: false,
|
||||
error: error.message,
|
||||
effectivenessScore: 0
|
||||
};
|
||||
|
||||
logSh(` ❌ ${target}: Échec - ${error.message}`, 'ERROR');
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
/**
|
||||
* Calculer efficacité adversariale
|
||||
*/
|
||||
function calculateAdversarialEffectiveness(pipelineStats, config, content) {
|
||||
let effectiveness = 0;
|
||||
|
||||
// Base score selon intensité
|
||||
effectiveness += config.intensity * 30;
|
||||
|
||||
// Bonus selon nombre d'étapes
|
||||
const stepsExecuted = Object.keys(config.steps).filter(k => config.steps[k]).length;
|
||||
effectiveness += stepsExecuted * 10;
|
||||
|
||||
// Bonus selon prompts adversariaux générés
|
||||
const promptRatio = pipelineStats.adversarialMetrics.promptsGenerated / Math.max(1, pipelineStats.elementsProcessed);
|
||||
effectiveness += promptRatio * 20;
|
||||
|
||||
// Analyse contenu si disponible
|
||||
if (Object.keys(content).length > 0) {
|
||||
const contentSample = Object.values(content).join(' ').substring(0, 1000);
|
||||
const diversityScore = analyzeDiversityScore(contentSample);
|
||||
effectiveness += diversityScore * 0.3;
|
||||
}
|
||||
|
||||
return Math.min(100, Math.max(0, effectiveness));
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser score de diversité
|
||||
*/
|
||||
function analyzeDiversityScore(content) {
|
||||
if (!content || typeof content !== 'string') return 0;
|
||||
|
||||
const words = content.split(/\s+/).filter(w => w.length > 2);
|
||||
if (words.length === 0) return 0;
|
||||
|
||||
const uniqueWords = [...new Set(words.map(w => w.toLowerCase()))];
|
||||
const diversityRatio = uniqueWords.length / words.length;
|
||||
|
||||
return diversityRatio * 100;
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir informations détecteurs supportés
|
||||
*/
|
||||
function getAdversarialDetectorInfo() {
|
||||
return getSupportedDetectors();
|
||||
}
|
||||
|
||||
/**
|
||||
* Comparer efficacité de différents détecteurs
|
||||
*/
|
||||
async function compareAdversarialStrategies(hierarchy, csvData, detectorTargets = ['general', 'gptZero', 'originality', 'winston']) {
|
||||
const results = await diagnosticAdversarialPipeline(hierarchy, csvData, detectorTargets);
|
||||
|
||||
const comparison = {
|
||||
bestStrategy: null,
|
||||
bestScore: 0,
|
||||
strategies: [],
|
||||
averageScore: 0
|
||||
};
|
||||
|
||||
let totalScore = 0;
|
||||
let successCount = 0;
|
||||
|
||||
detectorTargets.forEach(target => {
|
||||
const result = results[target];
|
||||
if (result.success) {
|
||||
const strategyInfo = {
|
||||
detector: target,
|
||||
effectivenessScore: result.effectivenessScore,
|
||||
duration: result.stats.totalDuration,
|
||||
elementsProcessed: result.stats.elementsProcessed
|
||||
};
|
||||
|
||||
comparison.strategies.push(strategyInfo);
|
||||
totalScore += result.effectivenessScore;
|
||||
successCount++;
|
||||
|
||||
if (result.effectivenessScore > comparison.bestScore) {
|
||||
comparison.bestStrategy = target;
|
||||
comparison.bestScore = result.effectivenessScore;
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
comparison.averageScore = successCount > 0 ? totalScore / successCount : 0;
|
||||
|
||||
return comparison;
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
generateWithAdversarialContext, // ← MAIN ENTRY POINT
|
||||
generateSimpleAdversarial,
|
||||
generateAdvancedAdversarial,
|
||||
diagnosticAdversarialPipeline,
|
||||
compareAdversarialStrategies,
|
||||
getAdversarialDetectorInfo,
|
||||
calculateAdversarialEffectiveness
|
||||
};
|
||||
574
lib/adversarial-generation/DetectorStrategies.js
Normal file
574
lib/adversarial-generation/DetectorStrategies.js
Normal file
@ -0,0 +1,574 @@
|
||||
// ========================================
|
||||
// DETECTOR STRATEGIES - NIVEAU 3
|
||||
// Responsabilité: Stratégies spécialisées par détecteur IA
|
||||
// Anti-détection: Techniques ciblées contre chaque analyseur
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* STRATÉGIES DÉTECTEUR PAR DÉTECTEUR
|
||||
* Chaque classe implémente une approche spécialisée
|
||||
*/
|
||||
|
||||
class BaseDetectorStrategy {
|
||||
constructor(name) {
|
||||
this.name = name;
|
||||
this.effectiveness = 0.8;
|
||||
this.targetMetrics = [];
|
||||
}
|
||||
|
||||
/**
|
||||
* Générer instructions spécifiques pour ce détecteur
|
||||
*/
|
||||
generateInstructions(elementType, personality, csvData) {
|
||||
throw new Error('generateInstructions must be implemented by subclass');
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir instructions anti-détection (NOUVEAU pour modularité)
|
||||
*/
|
||||
getInstructions(intensity = 1.0) {
|
||||
throw new Error('getInstructions must be implemented by subclass');
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir conseils d'amélioration (NOUVEAU pour modularité)
|
||||
*/
|
||||
getEnhancementTips(intensity = 1.0) {
|
||||
throw new Error('getEnhancementTips must be implemented by subclass');
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser efficacité contre ce détecteur
|
||||
*/
|
||||
analyzeEffectiveness(content) {
|
||||
return {
|
||||
detector: this.name,
|
||||
effectiveness: this.effectiveness,
|
||||
metrics: this.analyzeContent(content)
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser contenu selon métriques de ce détecteur
|
||||
*/
|
||||
analyzeContent(content) {
|
||||
return {
|
||||
wordCount: content.split(/\s+/).length,
|
||||
sentenceCount: content.split(/[.!?]+/).length
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* STRATÉGIE ANTI-GPTZERO
|
||||
* Focus: Imprévisibilité et variation syntaxique
|
||||
*/
|
||||
class GPTZeroStrategy extends BaseDetectorStrategy {
|
||||
constructor() {
|
||||
super('GPTZero');
|
||||
this.effectiveness = 0.9;
|
||||
this.targetMetrics = ['perplexity', 'burstiness', 'unpredictability'];
|
||||
|
||||
this.techniques = {
|
||||
syntaxVariation: {
|
||||
name: 'Variation syntaxique drastique',
|
||||
rules: [
|
||||
'Alterne phrases simples (5-8 mots) et complexes (25-35 mots)',
|
||||
'Utilise structures atypiques : inversion, anacoluthe, ellipse',
|
||||
'Intercale incises, parenthèses, tirets pour briser linéarité',
|
||||
'Varie types : déclarative → interrogative → exclamative'
|
||||
]
|
||||
},
|
||||
lexicalUnpredictability: {
|
||||
name: 'Imprévisibilité lexicale',
|
||||
rules: [
|
||||
'Synonymes rares ou détournés : "performant" → "qui tient la route"',
|
||||
'Néologismes justifiés : "sur-mesurable" pour "très mesurable"',
|
||||
'Registres mélangés : soutenu puis familier dans même paragraphe',
|
||||
'Évite collocations attendues : "haute qualité" → "qualité qui dépote"'
|
||||
]
|
||||
},
|
||||
narrativeDisruption: {
|
||||
name: 'Disruption narrative',
|
||||
rules: [
|
||||
'Apartés personnels : "(j\'ai testé, c\'est bluffant)"',
|
||||
'Questions rhétoriques inattendues au milieu des faits',
|
||||
'Changements de perspective soudains : technique → humain → commercial',
|
||||
'Digressions courtes puis retour au sujet'
|
||||
]
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
generateInstructions(elementType, personality, csvData) {
|
||||
const instructions = [];
|
||||
|
||||
instructions.push(`ANTI-GPTZERO - MAXIMUM IMPRÉVISIBILITÉ:`);
|
||||
|
||||
// Techniques syntaxiques
|
||||
instructions.push(`\nSYNTAXE VARIABLE:`);
|
||||
this.techniques.syntaxVariation.rules.forEach(rule => {
|
||||
instructions.push(`• ${rule}`);
|
||||
});
|
||||
|
||||
// Imprévisibilité lexicale
|
||||
instructions.push(`\nLEXIQUE IMPRÉVISIBLE:`);
|
||||
this.techniques.lexicalUnpredictability.rules.forEach(rule => {
|
||||
instructions.push(`• ${rule}`);
|
||||
});
|
||||
|
||||
// Adaptation selon type élément
|
||||
if (elementType === 'titre_h1' || elementType === 'titre_h2') {
|
||||
instructions.push(`\nTITRES ANTI-GPTZERO:`);
|
||||
instructions.push(`• Évite formules attendues : "Guide complet" → "Le vrai topo sur"`);
|
||||
instructions.push(`• Structure atypique : question, exclamation, fragment`);
|
||||
} else if (elementType === 'texte') {
|
||||
instructions.push(`\nTEXTES ANTI-GPTZERO:`);
|
||||
this.techniques.narrativeDisruption.rules.forEach(rule => {
|
||||
instructions.push(`• ${rule}`);
|
||||
});
|
||||
}
|
||||
|
||||
// Adaptation personnalité
|
||||
if (personality) {
|
||||
instructions.push(`\nAVEC STYLE ${personality.nom.toUpperCase()}:`);
|
||||
instructions.push(`• Pousse ${personality.style} vers extrêmes : plus marqué, moins lisse`);
|
||||
instructions.push(`• Accentue tics de langage : répétitions, expressions favorites`);
|
||||
}
|
||||
|
||||
return instructions.join('\n');
|
||||
}
|
||||
|
||||
/**
|
||||
* Instructions modulaires pour AdversarialCore
|
||||
*/
|
||||
getInstructions(intensity = 1.0) {
|
||||
const baseRules = [
|
||||
'Surprends avec tournures inattendues et constructions atypiques',
|
||||
'Évite phrases trop prévisibles ou patterns répétitifs',
|
||||
'Utilise synonymes moins évidents et vocabulaire moins commun',
|
||||
'Varie drastiquement la complexité syntaxique entre phrases'
|
||||
];
|
||||
|
||||
const intensiveRules = [
|
||||
'Intercale observations personnelles ou détours narratifs',
|
||||
'Alterne registres de langue (soutenu → familier → technique)',
|
||||
'Brise la logique linéaire avec des parenthèses, incises, apartés',
|
||||
'Créé ruptures narratives et changements de perspective soudains'
|
||||
];
|
||||
|
||||
return intensity >= 1.0 ? [...baseRules, ...intensiveRules] : baseRules;
|
||||
}
|
||||
|
||||
/**
|
||||
* Conseils d'amélioration pour enhancement method
|
||||
*/
|
||||
getEnhancementTips(intensity = 1.0) {
|
||||
return [
|
||||
'Remplace connecteurs prévisibles par variations inattendues',
|
||||
'Ajoute incises courtes pour briser la linéarité',
|
||||
'Varie longueurs phrases dans même paragraphe',
|
||||
'Utilise synonymes moins courants mais naturels',
|
||||
...(intensity > 0.8 ? [
|
||||
'Insère questions rhétoriques ponctuelles',
|
||||
'Ajoute nuances et hésitations authentiques'
|
||||
] : [])
|
||||
];
|
||||
}
|
||||
|
||||
analyzeContent(content) {
|
||||
const baseMetrics = super.analyzeContent(content);
|
||||
|
||||
// Analyse perplexité approximative
|
||||
const sentences = content.split(/[.!?]+/).filter(s => s.trim().length > 5);
|
||||
const sentenceLengths = sentences.map(s => s.split(/\s+/).length);
|
||||
|
||||
// Variance longueur (proxy pour burstiness)
|
||||
const avgLength = sentenceLengths.reduce((a, b) => a + b, 0) / sentenceLengths.length;
|
||||
const variance = sentenceLengths.reduce((acc, len) => acc + Math.pow(len - avgLength, 2), 0) / sentenceLengths.length;
|
||||
const burstiness = Math.sqrt(variance) / avgLength;
|
||||
|
||||
// Diversité lexicale (proxy pour imprévisibilité)
|
||||
const words = content.toLowerCase().split(/\s+/).filter(w => w.length > 2);
|
||||
const uniqueWords = [...new Set(words)];
|
||||
const lexicalDiversity = uniqueWords.length / words.length;
|
||||
|
||||
return {
|
||||
...baseMetrics,
|
||||
burstiness: Math.round(burstiness * 100) / 100,
|
||||
lexicalDiversity: Math.round(lexicalDiversity * 100) / 100,
|
||||
avgSentenceLength: Math.round(avgLength),
|
||||
gptZeroRiskLevel: this.calculateGPTZeroRisk(burstiness, lexicalDiversity)
|
||||
};
|
||||
}
|
||||
|
||||
calculateGPTZeroRisk(burstiness, lexicalDiversity) {
|
||||
// Heuristique : GPTZero détecte uniformité faible + diversité faible
|
||||
const uniformityScore = Math.min(burstiness, 1) * 100;
|
||||
const diversityScore = lexicalDiversity * 100;
|
||||
const combinedScore = (uniformityScore + diversityScore) / 2;
|
||||
|
||||
if (combinedScore > 70) return 'low';
|
||||
if (combinedScore > 40) return 'medium';
|
||||
return 'high';
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* STRATÉGIE ANTI-ORIGINALITY
|
||||
* Focus: Diversité sémantique et originalité
|
||||
*/
|
||||
class OriginalityStrategy extends BaseDetectorStrategy {
|
||||
constructor() {
|
||||
super('Originality');
|
||||
this.effectiveness = 0.85;
|
||||
this.targetMetrics = ['semantic_diversity', 'originality_score', 'vocabulary_range'];
|
||||
|
||||
this.techniques = {
|
||||
semanticCreativity: {
|
||||
name: 'Créativité sémantique',
|
||||
rules: [
|
||||
'Métaphores inattendues : "cette plaque, c\'est le passeport de votre façade"',
|
||||
'Comparaisons originales : évite clichés, invente analogies',
|
||||
'Reformulations créatives : "résistant aux intempéries" → "qui brave les saisons"',
|
||||
'Néologismes justifiés et expressifs'
|
||||
]
|
||||
},
|
||||
perspectiveShifting: {
|
||||
name: 'Changements de perspective',
|
||||
rules: [
|
||||
'Angles multiples sur même info : technique → esthétique → pratique',
|
||||
'Points de vue variés : fabricant, utilisateur, installateur, voisin',
|
||||
'Temporalités mélangées : présent, futur proche, retour d\'expérience',
|
||||
'Niveaux d\'abstraction : détail précis puis vue d\'ensemble'
|
||||
]
|
||||
},
|
||||
linguisticInventiveness: {
|
||||
name: 'Inventivité linguistique',
|
||||
rules: [
|
||||
'Jeux de mots subtils et expressions détournées',
|
||||
'Régionalismes et références culturelles précises',
|
||||
'Vocabulaire technique humanisé avec créativité',
|
||||
'Rythmes et sonorités travaillés : allitérations, assonances'
|
||||
]
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
generateInstructions(elementType, personality, csvData) {
|
||||
const instructions = [];
|
||||
|
||||
instructions.push(`ANTI-ORIGINALITY - MAXIMUM CRÉATIVITÉ SÉMANTIQUE:`);
|
||||
|
||||
// Créativité sémantique
|
||||
instructions.push(`\nCRÉATIVITÉ SÉMANTIQUE:`);
|
||||
this.techniques.semanticCreativity.rules.forEach(rule => {
|
||||
instructions.push(`• ${rule}`);
|
||||
});
|
||||
|
||||
// Changements de perspective
|
||||
instructions.push(`\nPERSPECTIVES MULTIPLES:`);
|
||||
this.techniques.perspectiveShifting.rules.forEach(rule => {
|
||||
instructions.push(`• ${rule}`);
|
||||
});
|
||||
|
||||
// Spécialisation par élément
|
||||
if (elementType === 'intro') {
|
||||
instructions.push(`\nINTROS ANTI-ORIGINALITY:`);
|
||||
instructions.push(`• Commence par angle totalement inattendu pour le sujet`);
|
||||
instructions.push(`• Évite intro-types, réinvente présentation du sujet`);
|
||||
instructions.push(`• Crée surprise puis retour naturel au cœur du sujet`);
|
||||
} else if (elementType.includes('faq')) {
|
||||
instructions.push(`\nFAQ ANTI-ORIGINALITY:`);
|
||||
instructions.push(`• Questions vraiment originales, pas standard secteur`);
|
||||
instructions.push(`• Réponses avec angles créatifs et exemples inédits`);
|
||||
}
|
||||
|
||||
// Contexte métier créatif
|
||||
if (csvData && csvData.mc0) {
|
||||
instructions.push(`\nCRÉATIVITÉ CONTEXTUELLE ${csvData.mc0.toUpperCase()}:`);
|
||||
instructions.push(`• Réinvente façon de parler de ${csvData.mc0}`);
|
||||
instructions.push(`• Évite vocabulaire convenu du secteur, invente expressions`);
|
||||
instructions.push(`• Trouve analogies originales spécifiques à ${csvData.mc0}`);
|
||||
}
|
||||
|
||||
// Inventivité linguistique
|
||||
instructions.push(`\nINVENTIVITÉ LINGUISTIQUE:`);
|
||||
this.techniques.linguisticInventiveness.rules.forEach(rule => {
|
||||
instructions.push(`• ${rule}`);
|
||||
});
|
||||
|
||||
return instructions.join('\n');
|
||||
}
|
||||
|
||||
/**
|
||||
* Instructions modulaires pour AdversarialCore
|
||||
*/
|
||||
getInstructions(intensity = 1.0) {
|
||||
const baseRules = [
|
||||
'Vocabulaire TRÈS varié : évite répétitions même de synonymes',
|
||||
'Structures phrases délibérément irrégulières et asymétriques',
|
||||
'Changements angles fréquents : technique → personnel → général',
|
||||
'Créativité sémantique : métaphores, comparaisons inattendues'
|
||||
];
|
||||
|
||||
const intensiveRules = [
|
||||
'Évite formulations académiques ou trop structurées',
|
||||
'Intègre références culturelles, expressions régionales',
|
||||
'Subvertis les attentes : commence par la fin, questionne l\'évidence',
|
||||
'Réinvente façon de présenter informations basiques'
|
||||
];
|
||||
|
||||
return intensity >= 1.0 ? [...baseRules, ...intensiveRules] : baseRules;
|
||||
}
|
||||
|
||||
/**
|
||||
* Conseils d'amélioration pour enhancement method
|
||||
*/
|
||||
getEnhancementTips(intensity = 1.0) {
|
||||
return [
|
||||
'Trouve synonymes créatifs et expressions détournées',
|
||||
'Ajoute métaphores subtiles et comparaisons originales',
|
||||
'Varie angles d\'approche dans même contenu',
|
||||
'Utilise vocabulaire technique humanisé',
|
||||
...(intensity > 0.8 ? [
|
||||
'Insère références culturelles ou régionalismes',
|
||||
'Crée néologismes justifiés et expressifs'
|
||||
] : [])
|
||||
];
|
||||
}
|
||||
|
||||
analyzeContent(content) {
|
||||
const baseMetrics = super.analyzeContent(content);
|
||||
|
||||
// Analyse diversité sémantique
|
||||
const words = content.toLowerCase().split(/\s+/).filter(w => w.length > 3);
|
||||
const uniqueWords = [...new Set(words)];
|
||||
const semanticDiversity = uniqueWords.length / words.length;
|
||||
|
||||
// Détection créativité (heuristique)
|
||||
const creativityIndicators = [
|
||||
'comme', 'tel', 'sorte de', 'façon de', 'manière de', // métaphores
|
||||
'(', ')', '"', // originalité structure
|
||||
'?', '!', // variation tonale
|
||||
];
|
||||
|
||||
const creativityCount = creativityIndicators.reduce((count, indicator) => {
|
||||
return count + (content.match(new RegExp(indicator.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'), 'g')) || []).length;
|
||||
}, 0);
|
||||
|
||||
const creativityScore = Math.min(100, (creativityCount / words.length) * 1000);
|
||||
|
||||
return {
|
||||
...baseMetrics,
|
||||
semanticDiversity: Math.round(semanticDiversity * 100) / 100,
|
||||
creativityScore: Math.round(creativityScore),
|
||||
uniqueWordRatio: Math.round((uniqueWords.length / words.length) * 100),
|
||||
originalityRiskLevel: this.calculateOriginalityRisk(semanticDiversity, creativityScore)
|
||||
};
|
||||
}
|
||||
|
||||
calculateOriginalityRisk(semanticDiversity, creativityScore) {
|
||||
const diversityScore = semanticDiversity * 100;
|
||||
const combinedScore = (diversityScore + creativityScore) / 2;
|
||||
|
||||
if (combinedScore > 60) return 'low';
|
||||
if (combinedScore > 35) return 'medium';
|
||||
return 'high';
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* STRATÉGIE GÉNÉRALE
|
||||
* Équilibre entre toutes les techniques
|
||||
*/
|
||||
class GeneralStrategy extends BaseDetectorStrategy {
|
||||
constructor() {
|
||||
super('General');
|
||||
this.effectiveness = 0.75;
|
||||
this.targetMetrics = ['overall_naturalness', 'human_likeness'];
|
||||
}
|
||||
|
||||
generateInstructions(elementType, personality, csvData) {
|
||||
const instructions = [];
|
||||
|
||||
instructions.push(`ANTI-DÉTECTION GÉNÉRALE - ÉQUILIBRE OPTIMAL:`);
|
||||
|
||||
// Instructions générales équilibrées
|
||||
instructions.push(`\nNATUREL ET VARIÉ:`);
|
||||
instructions.push(`• Évite mots typiques IA : "optimal", "comprehensive", "seamless", "robust"`);
|
||||
instructions.push(`• Mélange phrases courtes (5-10 mots) et longues (15-25 mots) naturellement`);
|
||||
instructions.push(`• Utilise expressions idiomatiques françaises authentiques`);
|
||||
instructions.push(`• Intègre imperfections humaines : répétitions légères, hésitations`);
|
||||
instructions.push(`• Change angle ou ton 1-2 fois selon longueur du contenu`);
|
||||
|
||||
// Adaptation personnalité équilibrée
|
||||
if (personality) {
|
||||
instructions.push(`\nSTYLE ${personality.nom} NATUREL:`);
|
||||
instructions.push(`• Applique style ${personality.style} de façon authentique, pas forcée`);
|
||||
instructions.push(`• Respecte vocabulaire naturel : ${personality.vocabulairePref || 'varié'}`);
|
||||
instructions.push(`• Utilise connecteurs variés : ${personality.connecteursPref || 'naturels'}`);
|
||||
}
|
||||
|
||||
return instructions.join('\n');
|
||||
}
|
||||
|
||||
/**
|
||||
* Instructions modulaires pour AdversarialCore
|
||||
*/
|
||||
getInstructions(intensity = 1.0) {
|
||||
const baseRules = [
|
||||
'Évite ces mots typiques IA : "optimal", "comprehensive", "seamless", "robust", "leverage"',
|
||||
'Varie longueurs phrases : mélange phrases courtes (5-10 mots) ET longues (20-30 mots)',
|
||||
'Utilise expressions françaises familières et tournures idiomatiques',
|
||||
'Ajoute imperfections naturelles : répétitions légères, hésitations, reformulations'
|
||||
];
|
||||
|
||||
const intensiveRules = [
|
||||
'Change angle ou perspective 1-2 fois dans le texte',
|
||||
'Préfère synonymes moins évidents : "bon" plutôt qu\'excellent", "solide" plutôt qu\'optimisé"',
|
||||
'Intègre connecteurs variés et naturels selon le contexte',
|
||||
'Simule variation naturelle d\'humeur et d\'énergie rédactionnelle'
|
||||
];
|
||||
|
||||
return intensity >= 0.8 ? [...baseRules, ...intensiveRules] : baseRules;
|
||||
}
|
||||
|
||||
/**
|
||||
* Conseils d'amélioration pour enhancement method
|
||||
*/
|
||||
getEnhancementTips(intensity = 1.0) {
|
||||
return [
|
||||
'Remplace mots typiques IA par synonymes plus naturels',
|
||||
'Ajoute nuances et hésitations : "peut-être", "généralement", "souvent"',
|
||||
'Varie connecteurs pour éviter répétitions mécaniques',
|
||||
'Personnalise avec observations subjectives légères',
|
||||
...(intensity > 0.7 ? [
|
||||
'Intègre "erreurs" humaines : corrections, précisions',
|
||||
'Simule changement léger de ton ou d\'énergie'
|
||||
] : [])
|
||||
];
|
||||
}
|
||||
|
||||
analyzeContent(content) {
|
||||
const baseMetrics = super.analyzeContent(content);
|
||||
|
||||
// Métrique naturalité générale
|
||||
const sentences = content.split(/[.!?]+/).filter(s => s.trim().length > 5);
|
||||
const avgWordsPerSentence = baseMetrics.wordCount / baseMetrics.sentenceCount;
|
||||
|
||||
// Détection mots typiques IA
|
||||
const aiWords = ['optimal', 'comprehensive', 'seamless', 'robust', 'leverage'];
|
||||
const aiWordCount = aiWords.reduce((count, word) => {
|
||||
return count + (content.toLowerCase().match(new RegExp(`\\b${word}\\b`, 'g')) || []).length;
|
||||
}, 0);
|
||||
|
||||
const aiWordDensity = aiWordCount / baseMetrics.wordCount * 100;
|
||||
const naturalness = Math.max(0, 100 - (aiWordDensity * 10) - Math.abs(avgWordsPerSentence - 15));
|
||||
|
||||
return {
|
||||
...baseMetrics,
|
||||
avgWordsPerSentence: Math.round(avgWordsPerSentence),
|
||||
aiWordCount,
|
||||
aiWordDensity: Math.round(aiWordDensity * 100) / 100,
|
||||
naturalnessScore: Math.round(naturalness),
|
||||
generalRiskLevel: naturalness > 70 ? 'low' : naturalness > 40 ? 'medium' : 'high'
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* FACTORY POUR CRÉER STRATÉGIES
|
||||
*/
|
||||
class DetectorStrategyFactory {
|
||||
static strategies = {
|
||||
'general': GeneralStrategy,
|
||||
'gptZero': GPTZeroStrategy,
|
||||
'originality': OriginalityStrategy
|
||||
};
|
||||
|
||||
static createStrategy(detectorName) {
|
||||
const StrategyClass = this.strategies[detectorName];
|
||||
if (!StrategyClass) {
|
||||
logSh(`⚠️ Stratégie inconnue: ${detectorName}, fallback vers général`, 'WARNING');
|
||||
return new GeneralStrategy();
|
||||
}
|
||||
return new StrategyClass();
|
||||
}
|
||||
|
||||
static getSupportedDetectors() {
|
||||
return Object.keys(this.strategies).map(name => {
|
||||
const strategy = this.createStrategy(name);
|
||||
return {
|
||||
name,
|
||||
displayName: strategy.name,
|
||||
effectiveness: strategy.effectiveness,
|
||||
targetMetrics: strategy.targetMetrics
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
static analyzeContentAgainstAllDetectors(content) {
|
||||
const results = {};
|
||||
|
||||
Object.keys(this.strategies).forEach(detectorName => {
|
||||
const strategy = this.createStrategy(detectorName);
|
||||
results[detectorName] = strategy.analyzeEffectiveness(content);
|
||||
});
|
||||
|
||||
return results;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* FONCTION UTILITAIRE - SÉLECTION STRATÉGIE OPTIMALE
|
||||
*/
|
||||
function selectOptimalStrategy(elementType, personality, previousResults = {}) {
|
||||
// Logique de sélection intelligente
|
||||
|
||||
// Si résultats précédents disponibles, adapter
|
||||
if (previousResults.gptZero && previousResults.gptZero.effectiveness < 0.6) {
|
||||
return 'gptZero'; // Renforcer anti-GPTZero
|
||||
}
|
||||
|
||||
if (previousResults.originality && previousResults.originality.effectiveness < 0.6) {
|
||||
return 'originality'; // Renforcer anti-Originality
|
||||
}
|
||||
|
||||
// Sélection par type d'élément
|
||||
if (elementType === 'titre_h1' || elementType === 'titre_h2') {
|
||||
return 'gptZero'; // Titres bénéficient imprévisibilité
|
||||
}
|
||||
|
||||
if (elementType === 'intro' || elementType === 'texte') {
|
||||
return 'originality'; // Corps bénéficie créativité sémantique
|
||||
}
|
||||
|
||||
if (elementType.includes('faq')) {
|
||||
return 'general'; // FAQ équilibre naturalité
|
||||
}
|
||||
|
||||
// Par personnalité
|
||||
if (personality) {
|
||||
if (personality.style === 'créatif' || personality.style === 'original') {
|
||||
return 'originality';
|
||||
}
|
||||
if (personality.style === 'technique' || personality.style === 'expert') {
|
||||
return 'gptZero';
|
||||
}
|
||||
}
|
||||
|
||||
return 'general'; // Fallback
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
DetectorStrategyFactory,
|
||||
GPTZeroStrategy,
|
||||
OriginalityStrategy,
|
||||
GeneralStrategy,
|
||||
selectOptimalStrategy,
|
||||
BaseDetectorStrategy
|
||||
};
|
||||
202
lib/adversarial-generation/demo-modulaire.js
Normal file
202
lib/adversarial-generation/demo-modulaire.js
Normal file
@ -0,0 +1,202 @@
|
||||
// ========================================
|
||||
// DÉMONSTRATION ARCHITECTURE MODULAIRE
|
||||
// Usage: node lib/adversarial-generation/demo-modulaire.js
|
||||
// Objectif: Valider l'intégration modulaire adversariale
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
|
||||
// Import modules adversariaux modulaires
|
||||
const { applyAdversarialLayer } = require('./AdversarialCore');
|
||||
const {
|
||||
applyPredefinedStack,
|
||||
applyAdaptiveLayers,
|
||||
getAvailableStacks
|
||||
} = require('./AdversarialLayers');
|
||||
const { calculateAntiDetectionScore, evaluateAdversarialImprovement } = require('./AdversarialUtils');
|
||||
|
||||
/**
|
||||
* EXEMPLE D'UTILISATION MODULAIRE
|
||||
*/
|
||||
async function demoModularAdversarial() {
|
||||
console.log('\n🎯 === DÉMONSTRATION ADVERSARIAL MODULAIRE ===\n');
|
||||
|
||||
// Contenu d'exemple (simulé contenu généré normal)
|
||||
const exempleContenu = {
|
||||
'|Titre_Principal_1|': 'Guide complet pour choisir votre plaque personnalisée',
|
||||
'|Introduction_1|': 'La personnalisation d\'une plaque signalétique représente un enjeu optimal pour votre entreprise. Cette solution comprehensive permet de créer une identité visuelle robuste et seamless.',
|
||||
'|Texte_1|': 'Il est important de noter que les matériaux utilisés sont cutting-edge. Par ailleurs, la qualité est optimal. En effet, nos solutions sont comprehensive et robust.',
|
||||
'|FAQ_Question_1|': 'Quels sont les matériaux disponibles ?',
|
||||
'|FAQ_Reponse_1|': 'Nos matériaux sont optimal : dibond, aluminium, PMMA. Ces solutions comprehensive garantissent une qualité robust et seamless.'
|
||||
};
|
||||
|
||||
console.log('📊 CONTENU ORIGINAL:');
|
||||
Object.entries(exempleContenu).forEach(([tag, content]) => {
|
||||
console.log(` ${tag}: "${content.substring(0, 60)}..."`);
|
||||
});
|
||||
|
||||
// Analyser contenu original
|
||||
const scoreOriginal = calculateAntiDetectionScore(Object.values(exempleContenu).join(' '));
|
||||
console.log(`\n📈 Score anti-détection original: ${scoreOriginal}/100`);
|
||||
|
||||
try {
|
||||
// ========================================
|
||||
// TEST 1: COUCHE SIMPLE
|
||||
// ========================================
|
||||
console.log('\n🔧 TEST 1: Application couche adversariale simple');
|
||||
|
||||
const result1 = await applyAdversarialLayer(exempleContenu, {
|
||||
detectorTarget: 'general',
|
||||
intensity: 0.8,
|
||||
method: 'enhancement'
|
||||
});
|
||||
|
||||
console.log(`✅ Résultat: ${result1.stats.elementsModified}/${result1.stats.elementsProcessed} éléments modifiés`);
|
||||
|
||||
const scoreAmeliore = calculateAntiDetectionScore(Object.values(result1.content).join(' '));
|
||||
console.log(`📈 Score anti-détection amélioré: ${scoreAmeliore}/100 (+${scoreAmeliore - scoreOriginal})`);
|
||||
|
||||
// ========================================
|
||||
// TEST 2: STACK PRÉDÉFINI
|
||||
// ========================================
|
||||
console.log('\n📦 TEST 2: Application stack prédéfini');
|
||||
|
||||
// Lister stacks disponibles
|
||||
const stacks = getAvailableStacks();
|
||||
console.log(' Stacks disponibles:');
|
||||
stacks.forEach(stack => {
|
||||
console.log(` - ${stack.name}: ${stack.description} (${stack.layersCount} couches)`);
|
||||
});
|
||||
|
||||
const result2 = await applyPredefinedStack(exempleContenu, 'standardDefense', {
|
||||
csvData: {
|
||||
personality: { nom: 'Marc', style: 'technique' },
|
||||
mc0: 'plaque personnalisée'
|
||||
}
|
||||
});
|
||||
|
||||
console.log(`✅ Stack standard: ${result2.stats.totalModifications} modifications totales`);
|
||||
console.log(` 📊 Couches appliquées: ${result2.stats.layers.filter(l => l.success).length}/${result2.stats.layers.length}`);
|
||||
|
||||
const scoreStack = calculateAntiDetectionScore(Object.values(result2.content).join(' '));
|
||||
console.log(`📈 Score anti-détection stack: ${scoreStack}/100 (+${scoreStack - scoreOriginal})`);
|
||||
|
||||
// ========================================
|
||||
// TEST 3: COUCHES ADAPTATIVES
|
||||
// ========================================
|
||||
console.log('\n🧠 TEST 3: Application couches adaptatives');
|
||||
|
||||
const result3 = await applyAdaptiveLayers(exempleContenu, {
|
||||
targetDetectors: ['gptZero', 'originality'],
|
||||
maxIntensity: 1.2
|
||||
});
|
||||
|
||||
if (result3.stats.adaptive) {
|
||||
console.log(`✅ Adaptatif: ${result3.stats.layersApplied || result3.stats.totalModifications} modifications`);
|
||||
|
||||
const scoreAdaptatif = calculateAntiDetectionScore(Object.values(result3.content).join(' '));
|
||||
console.log(`📈 Score anti-détection adaptatif: ${scoreAdaptatif}/100 (+${scoreAdaptatif - scoreOriginal})`);
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// COMPARAISON FINALE
|
||||
// ========================================
|
||||
console.log('\n📊 COMPARAISON FINALE:');
|
||||
|
||||
const evaluation = evaluateAdversarialImprovement(
|
||||
Object.values(exempleContenu).join(' '),
|
||||
Object.values(result2.content).join(' '),
|
||||
'general'
|
||||
);
|
||||
|
||||
console.log(` 🔹 Réduction empreintes IA: ${evaluation.fingerprintReduction.toFixed(2)}%`);
|
||||
console.log(` 🔹 Augmentation diversité: ${evaluation.diversityIncrease.toFixed(2)}%`);
|
||||
console.log(` 🔹 Amélioration variation: ${evaluation.variationIncrease.toFixed(2)}%`);
|
||||
console.log(` 🔹 Score amélioration global: ${evaluation.improvementScore}`);
|
||||
console.log(` 🔹 Taux modification: ${evaluation.modificationRate.toFixed(2)}%`);
|
||||
console.log(` 💡 Recommandation: ${evaluation.recommendation}`);
|
||||
|
||||
// ========================================
|
||||
// EXEMPLES DE CONTENU TRANSFORMÉ
|
||||
// ========================================
|
||||
console.log('\n✨ EXEMPLES DE TRANSFORMATION:');
|
||||
|
||||
const exempleTransforme = result2.content['|Introduction_1|'] || result1.content['|Introduction_1|'];
|
||||
console.log('\n📝 AVANT:');
|
||||
console.log(` "${exempleContenu['|Introduction_1|']}"`);
|
||||
console.log('\n📝 APRÈS:');
|
||||
console.log(` "${exempleTransforme}"`);
|
||||
|
||||
console.log('\n✅ === DÉMONSTRATION MODULAIRE TERMINÉE ===\n');
|
||||
|
||||
return {
|
||||
success: true,
|
||||
originalScore: scoreOriginal,
|
||||
improvedScore: Math.max(scoreAmeliore, scoreStack),
|
||||
improvement: evaluation.improvementScore
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
console.error('\n❌ ERREUR DÉMONSTRATION:', error.message);
|
||||
return { success: false, error: error.message };
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* EXEMPLE D'INTÉGRATION AVEC PIPELINE NORMALE
|
||||
*/
|
||||
async function demoIntegrationPipeline() {
|
||||
console.log('\n🔗 === DÉMONSTRATION INTÉGRATION PIPELINE ===\n');
|
||||
|
||||
// Simuler résultat pipeline normale (Level 1)
|
||||
const contenuNormal = {
|
||||
'|Titre_H1_1|': 'Solutions de plaques personnalisées professionnelles',
|
||||
'|Intro_1|': 'Notre expertise en signalétique permet de créer des plaques sur mesure adaptées à vos besoins spécifiques.',
|
||||
'|Texte_1|': 'Les matériaux proposés incluent l\'aluminium, le dibond et le PMMA. Chaque solution présente des avantages particuliers selon l\'usage prévu.'
|
||||
};
|
||||
|
||||
console.log('💼 SCÉNARIO: Application adversarial post-pipeline normale');
|
||||
|
||||
try {
|
||||
// Exemple Level 6 - Post-processing adversarial
|
||||
console.log('\n🎯 Étape 1: Contenu généré par pipeline normale');
|
||||
console.log(' ✅ Contenu de base: qualité préservée');
|
||||
|
||||
console.log('\n🎯 Étape 2: Application couche adversariale modulaire');
|
||||
const resultAdversarial = await applyAdversarialLayer(contenuNormal, {
|
||||
detectorTarget: 'gptZero',
|
||||
intensity: 0.9,
|
||||
method: 'hybrid',
|
||||
preserveStructure: true
|
||||
});
|
||||
|
||||
console.log(` ✅ Couche adversariale: ${resultAdversarial.stats.elementsModified} éléments modifiés`);
|
||||
|
||||
console.log('\n📊 RÉSULTAT FINAL:');
|
||||
Object.entries(resultAdversarial.content).forEach(([tag, content]) => {
|
||||
console.log(` ${tag}:`);
|
||||
console.log(` AVANT: "${contenuNormal[tag]}"`);
|
||||
console.log(` APRÈS: "${content}"`);
|
||||
console.log('');
|
||||
});
|
||||
|
||||
return { success: true, result: resultAdversarial };
|
||||
|
||||
} catch (error) {
|
||||
console.error('❌ ERREUR INTÉGRATION:', error.message);
|
||||
return { success: false, error: error.message };
|
||||
}
|
||||
}
|
||||
|
||||
// Exécuter démonstrations si fichier appelé directement
|
||||
if (require.main === module) {
|
||||
(async () => {
|
||||
await demoModularAdversarial();
|
||||
await demoIntegrationPipeline();
|
||||
})().catch(console.error);
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
demoModularAdversarial,
|
||||
demoIntegrationPipeline
|
||||
};
|
||||
389
lib/generation/InitialGeneration.js
Normal file
389
lib/generation/InitialGeneration.js
Normal file
@ -0,0 +1,389 @@
|
||||
// ========================================
|
||||
// ÉTAPE 1: GÉNÉRATION INITIALE
|
||||
// Responsabilité: Créer le contenu de base avec Claude uniquement
|
||||
// LLM: Claude Sonnet (température 0.7)
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - GÉNÉRATION INITIALE
|
||||
* Input: { content: {}, csvData: {}, context: {} }
|
||||
* Output: { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function generateInitialContent(input) {
|
||||
return await tracer.run('InitialGeneration.generateInitialContent()', async () => {
|
||||
const { hierarchy, csvData, context = {} } = input;
|
||||
|
||||
await tracer.annotate({
|
||||
step: '1/4',
|
||||
llmProvider: 'claude',
|
||||
elementsCount: Object.keys(hierarchy).length,
|
||||
mc0: csvData.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🚀 ÉTAPE 1/4: Génération initiale (Claude)`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(hierarchy).length} éléments à générer`, 'INFO');
|
||||
|
||||
try {
|
||||
// Collecter tous les éléments dans l'ordre XML
|
||||
const allElements = collectElementsInXMLOrder(hierarchy);
|
||||
|
||||
// Séparer FAQ pairs et autres éléments
|
||||
const { faqPairs, otherElements } = separateElementTypes(allElements);
|
||||
|
||||
// Générer en chunks pour éviter timeouts
|
||||
const results = {};
|
||||
|
||||
// 1. Générer éléments normaux (titres, textes, intro)
|
||||
if (otherElements.length > 0) {
|
||||
const normalResults = await generateNormalElements(otherElements, csvData);
|
||||
Object.assign(results, normalResults);
|
||||
}
|
||||
|
||||
// 2. Générer paires FAQ si présentes
|
||||
if (faqPairs.length > 0) {
|
||||
const faqResults = await generateFAQPairs(faqPairs, csvData);
|
||||
Object.assign(results, faqResults);
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: Object.keys(results).length,
|
||||
generated: Object.keys(results).length,
|
||||
faqPairs: faqPairs.length,
|
||||
duration
|
||||
};
|
||||
|
||||
logSh(`✅ ÉTAPE 1/4 TERMINÉE: ${stats.generated} éléments générés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event(`Génération initiale terminée`, stats);
|
||||
|
||||
return {
|
||||
content: results,
|
||||
stats,
|
||||
debug: {
|
||||
llmProvider: 'claude',
|
||||
step: 1,
|
||||
elementsGenerated: Object.keys(results)
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ ÉTAPE 1/4 ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
throw new Error(`InitialGeneration failed: ${error.message}`);
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Générer éléments normaux (titres, textes, intro) en chunks
|
||||
*/
|
||||
async function generateNormalElements(elements, csvData) {
|
||||
logSh(`📝 Génération éléments normaux: ${elements.length} éléments`, 'DEBUG');
|
||||
|
||||
const results = {};
|
||||
const chunks = chunkArray(elements, 4); // Chunks de 4 pour éviter timeouts
|
||||
|
||||
for (let chunkIndex = 0; chunkIndex < chunks.length; chunkIndex++) {
|
||||
const chunk = chunks[chunkIndex];
|
||||
logSh(` 📦 Chunk ${chunkIndex + 1}/${chunks.length}: ${chunk.length} éléments`, 'DEBUG');
|
||||
|
||||
try {
|
||||
const prompt = createBatchPrompt(chunk, csvData);
|
||||
|
||||
const response = await callLLM('claude', prompt, {
|
||||
temperature: 0.7,
|
||||
maxTokens: 2000 * chunk.length
|
||||
}, csvData.personality);
|
||||
|
||||
const chunkResults = parseBatchResponse(response, chunk);
|
||||
Object.assign(results, chunkResults);
|
||||
|
||||
logSh(` ✅ Chunk ${chunkIndex + 1}: ${Object.keys(chunkResults).length} éléments générés`, 'DEBUG');
|
||||
|
||||
// Délai entre chunks
|
||||
if (chunkIndex < chunks.length - 1) {
|
||||
await sleep(1500);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Chunk ${chunkIndex + 1} échoué: ${error.message}`, 'ERROR');
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Générer paires FAQ cohérentes
|
||||
*/
|
||||
async function generateFAQPairs(faqPairs, csvData) {
|
||||
logSh(`❓ Génération paires FAQ: ${faqPairs.length} paires`, 'DEBUG');
|
||||
|
||||
const prompt = createFAQPairsPrompt(faqPairs, csvData);
|
||||
|
||||
const response = await callLLM('claude', prompt, {
|
||||
temperature: 0.8,
|
||||
maxTokens: 3000
|
||||
}, csvData.personality);
|
||||
|
||||
return parseFAQResponse(response, faqPairs);
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt batch pour éléments normaux
|
||||
*/
|
||||
function createBatchPrompt(elements, csvData) {
|
||||
const personality = csvData.personality;
|
||||
|
||||
let prompt = `=== GÉNÉRATION CONTENU INITIAL ===
|
||||
Entreprise: Autocollant.fr - signalétique personnalisée
|
||||
Sujet: ${csvData.mc0}
|
||||
Rédacteur: ${personality.nom} (${personality.style})
|
||||
|
||||
ÉLÉMENTS À GÉNÉRER:
|
||||
|
||||
`;
|
||||
|
||||
elements.forEach((elementInfo, index) => {
|
||||
const cleanTag = elementInfo.tag.replace(/\|/g, '');
|
||||
prompt += `${index + 1}. [${cleanTag}] - ${getElementDescription(elementInfo)}\n`;
|
||||
});
|
||||
|
||||
prompt += `
|
||||
STYLE ${personality.nom.toUpperCase()}:
|
||||
- Vocabulaire: ${personality.vocabulairePref}
|
||||
- Phrases: ${personality.longueurPhrases}
|
||||
- Niveau: ${personality.niveauTechnique}
|
||||
|
||||
CONSIGNES:
|
||||
- Contenu SEO optimisé pour ${csvData.mc0}
|
||||
- Style ${personality.style} naturel
|
||||
- Pas de références techniques dans contenu
|
||||
- RÉPONSE DIRECTE par le contenu
|
||||
|
||||
FORMAT:
|
||||
[${elements[0].tag.replace(/\|/g, '')}]
|
||||
Contenu généré...
|
||||
|
||||
[${elements[1] ? elements[1].tag.replace(/\|/g, '') : 'element2'}]
|
||||
Contenu généré...`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse batch
|
||||
*/
|
||||
function parseBatchResponse(response, elements) {
|
||||
const results = {};
|
||||
const regex = /\[([^\]]+)\]\s*([^[]*?)(?=\n\[|$)/gs;
|
||||
let match;
|
||||
const parsedItems = {};
|
||||
|
||||
while ((match = regex.exec(response)) !== null) {
|
||||
const tag = match[1].trim();
|
||||
const content = cleanGeneratedContent(match[2].trim());
|
||||
parsedItems[tag] = content;
|
||||
}
|
||||
|
||||
// Mapper aux vrais tags
|
||||
elements.forEach(element => {
|
||||
const cleanTag = element.tag.replace(/\|/g, '');
|
||||
if (parsedItems[cleanTag] && parsedItems[cleanTag].length > 10) {
|
||||
results[element.tag] = parsedItems[cleanTag];
|
||||
} else {
|
||||
results[element.tag] = `Contenu professionnel pour ${element.element.name || cleanTag}`;
|
||||
logSh(`⚠️ Fallback pour [${cleanTag}]`, 'WARNING');
|
||||
}
|
||||
});
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt pour paires FAQ
|
||||
*/
|
||||
function createFAQPairsPrompt(faqPairs, csvData) {
|
||||
const personality = csvData.personality;
|
||||
|
||||
let prompt = `=== GÉNÉRATION PAIRES FAQ ===
|
||||
Sujet: ${csvData.mc0}
|
||||
Rédacteur: ${personality.nom} (${personality.style})
|
||||
|
||||
PAIRES À GÉNÉRER:
|
||||
`;
|
||||
|
||||
faqPairs.forEach((pair, index) => {
|
||||
const qTag = pair.question.tag.replace(/\|/g, '');
|
||||
const aTag = pair.answer.tag.replace(/\|/g, '');
|
||||
prompt += `${index + 1}. [${qTag}] + [${aTag}]\n`;
|
||||
});
|
||||
|
||||
prompt += `
|
||||
CONSIGNES:
|
||||
- Questions naturelles de clients
|
||||
- Réponses expertes ${personality.style}
|
||||
- Couvrir: prix, livraison, personnalisation
|
||||
|
||||
FORMAT:
|
||||
[${faqPairs[0].question.tag.replace(/\|/g, '')}]
|
||||
Question client naturelle ?
|
||||
|
||||
[${faqPairs[0].answer.tag.replace(/\|/g, '')}]
|
||||
Réponse utile et rassurante.`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse FAQ
|
||||
*/
|
||||
function parseFAQResponse(response, faqPairs) {
|
||||
const results = {};
|
||||
const regex = /\[([^\]]+)\]\s*([^[]*?)(?=\n\[|$)/gs;
|
||||
let match;
|
||||
const parsedItems = {};
|
||||
|
||||
while ((match = regex.exec(response)) !== null) {
|
||||
const tag = match[1].trim();
|
||||
const content = cleanGeneratedContent(match[2].trim());
|
||||
parsedItems[tag] = content;
|
||||
}
|
||||
|
||||
// Mapper aux paires FAQ
|
||||
faqPairs.forEach(pair => {
|
||||
const qCleanTag = pair.question.tag.replace(/\|/g, '');
|
||||
const aCleanTag = pair.answer.tag.replace(/\|/g, '');
|
||||
|
||||
if (parsedItems[qCleanTag]) results[pair.question.tag] = parsedItems[qCleanTag];
|
||||
if (parsedItems[aCleanTag]) results[pair.answer.tag] = parsedItems[aCleanTag];
|
||||
});
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
function collectElementsInXMLOrder(hierarchy) {
|
||||
const allElements = [];
|
||||
|
||||
Object.keys(hierarchy).forEach(path => {
|
||||
const section = hierarchy[path];
|
||||
|
||||
if (section.title) {
|
||||
allElements.push({
|
||||
tag: section.title.originalElement.originalTag,
|
||||
element: section.title.originalElement,
|
||||
type: section.title.originalElement.type
|
||||
});
|
||||
}
|
||||
|
||||
if (section.text) {
|
||||
allElements.push({
|
||||
tag: section.text.originalElement.originalTag,
|
||||
element: section.text.originalElement,
|
||||
type: section.text.originalElement.type
|
||||
});
|
||||
}
|
||||
|
||||
section.questions.forEach(q => {
|
||||
allElements.push({
|
||||
tag: q.originalElement.originalTag,
|
||||
element: q.originalElement,
|
||||
type: q.originalElement.type
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
return allElements;
|
||||
}
|
||||
|
||||
function separateElementTypes(allElements) {
|
||||
const faqPairs = [];
|
||||
const otherElements = [];
|
||||
const faqQuestions = {};
|
||||
const faqAnswers = {};
|
||||
|
||||
// Collecter FAQ questions et answers
|
||||
allElements.forEach(element => {
|
||||
if (element.type === 'faq_question') {
|
||||
const numberMatch = element.tag.match(/(\d+)/);
|
||||
const faqNumber = numberMatch ? numberMatch[1] : '1';
|
||||
faqQuestions[faqNumber] = element;
|
||||
} else if (element.type === 'faq_reponse') {
|
||||
const numberMatch = element.tag.match(/(\d+)/);
|
||||
const faqNumber = numberMatch ? numberMatch[1] : '1';
|
||||
faqAnswers[faqNumber] = element;
|
||||
} else {
|
||||
otherElements.push(element);
|
||||
}
|
||||
});
|
||||
|
||||
// Créer paires FAQ
|
||||
Object.keys(faqQuestions).forEach(number => {
|
||||
const question = faqQuestions[number];
|
||||
const answer = faqAnswers[number];
|
||||
|
||||
if (question && answer) {
|
||||
faqPairs.push({ number, question, answer });
|
||||
} else if (question) {
|
||||
otherElements.push(question);
|
||||
} else if (answer) {
|
||||
otherElements.push(answer);
|
||||
}
|
||||
});
|
||||
|
||||
return { faqPairs, otherElements };
|
||||
}
|
||||
|
||||
function getElementDescription(elementInfo) {
|
||||
switch (elementInfo.type) {
|
||||
case 'titre_h1': return 'Titre principal accrocheur';
|
||||
case 'titre_h2': return 'Titre de section';
|
||||
case 'titre_h3': return 'Sous-titre';
|
||||
case 'intro': return 'Introduction engageante';
|
||||
case 'texte': return 'Paragraphe informatif';
|
||||
default: return 'Contenu pertinent';
|
||||
}
|
||||
}
|
||||
|
||||
function cleanGeneratedContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
// Supprimer préfixes indésirables
|
||||
content = content.replace(/^(Bon,?\s*)?(alors,?\s*)?Titre_[HU]\d+_\d+[.,\s]*/gi, '');
|
||||
content = content.replace(/\*\*[^*]+\*\*/g, '');
|
||||
content = content.replace(/\s{2,}/g, ' ');
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
function chunkArray(array, size) {
|
||||
const chunks = [];
|
||||
for (let i = 0; i < array.length; i += size) {
|
||||
chunks.push(array.slice(i, i + size));
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
function sleep(ms) {
|
||||
return new Promise(resolve => setTimeout(resolve, ms));
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
generateInitialContent, // ← MAIN ENTRY POINT
|
||||
generateNormalElements,
|
||||
generateFAQPairs,
|
||||
createBatchPrompt,
|
||||
parseBatchResponse,
|
||||
collectElementsInXMLOrder,
|
||||
separateElementTypes
|
||||
};
|
||||
340
lib/generation/StyleEnhancement.js
Normal file
340
lib/generation/StyleEnhancement.js
Normal file
@ -0,0 +1,340 @@
|
||||
// ========================================
|
||||
// ÉTAPE 4: ENHANCEMENT STYLE PERSONNALITÉ
|
||||
// Responsabilité: Appliquer le style personnalité avec Mistral
|
||||
// LLM: Mistral (température 0.8)
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - ENHANCEMENT STYLE
|
||||
* Input: { content: {}, csvData: {}, context: {} }
|
||||
* Output: { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function applyPersonalityStyle(input) {
|
||||
return await tracer.run('StyleEnhancement.applyPersonalityStyle()', async () => {
|
||||
const { content, csvData, context = {} } = input;
|
||||
|
||||
await tracer.annotate({
|
||||
step: '4/4',
|
||||
llmProvider: 'mistral',
|
||||
elementsCount: Object.keys(content).length,
|
||||
personality: csvData.personality?.nom,
|
||||
mc0: csvData.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🎭 ÉTAPE 4/4: Enhancement style ${csvData.personality?.nom} (Mistral)`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments à styliser`, 'INFO');
|
||||
|
||||
try {
|
||||
const personality = csvData.personality;
|
||||
|
||||
if (!personality) {
|
||||
logSh(`⚠️ ÉTAPE 4/4: Aucune personnalité définie, style standard`, 'WARNING');
|
||||
return {
|
||||
content,
|
||||
stats: { processed: Object.keys(content).length, enhanced: 0, duration: Date.now() - startTime },
|
||||
debug: { llmProvider: 'mistral', step: 4, personalityApplied: 'none' }
|
||||
};
|
||||
}
|
||||
|
||||
// 1. Préparer éléments pour stylisation
|
||||
const styleElements = prepareElementsForStyling(content);
|
||||
|
||||
// 2. Appliquer style en chunks
|
||||
const styledResults = await applyStyleInChunks(styleElements, csvData);
|
||||
|
||||
// 3. Merger résultats
|
||||
const finalContent = { ...content };
|
||||
let actuallyStyled = 0;
|
||||
|
||||
Object.keys(styledResults).forEach(tag => {
|
||||
if (styledResults[tag] !== content[tag]) {
|
||||
finalContent[tag] = styledResults[tag];
|
||||
actuallyStyled++;
|
||||
}
|
||||
});
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: Object.keys(content).length,
|
||||
enhanced: actuallyStyled,
|
||||
personality: personality.nom,
|
||||
duration
|
||||
};
|
||||
|
||||
logSh(`✅ ÉTAPE 4/4 TERMINÉE: ${stats.enhanced} éléments stylisés ${personality.nom} (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event(`Enhancement style terminé`, stats);
|
||||
|
||||
return {
|
||||
content: finalContent,
|
||||
stats,
|
||||
debug: {
|
||||
llmProvider: 'mistral',
|
||||
step: 4,
|
||||
personalityApplied: personality.nom,
|
||||
styleCharacteristics: {
|
||||
vocabulaire: personality.vocabulairePref,
|
||||
connecteurs: personality.connecteursPref,
|
||||
style: personality.style
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ ÉTAPE 4/4 ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: retourner contenu original si Mistral indisponible
|
||||
logSh(`🔄 Fallback: contenu original conservé`, 'WARNING');
|
||||
return {
|
||||
content,
|
||||
stats: { processed: Object.keys(content).length, enhanced: 0, duration },
|
||||
debug: { llmProvider: 'mistral', step: 4, error: error.message, fallback: true }
|
||||
};
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Préparer éléments pour stylisation
|
||||
*/
|
||||
function prepareElementsForStyling(content) {
|
||||
const styleElements = [];
|
||||
|
||||
Object.keys(content).forEach(tag => {
|
||||
const text = content[tag];
|
||||
|
||||
// Tous les éléments peuvent bénéficier d'adaptation personnalité
|
||||
// Même les courts (titres) peuvent être adaptés au style
|
||||
styleElements.push({
|
||||
tag,
|
||||
content: text,
|
||||
priority: calculateStylePriority(text, tag)
|
||||
});
|
||||
});
|
||||
|
||||
// Trier par priorité (titres d'abord, puis textes longs)
|
||||
styleElements.sort((a, b) => b.priority - a.priority);
|
||||
|
||||
return styleElements;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculer priorité de stylisation
|
||||
*/
|
||||
function calculateStylePriority(text, tag) {
|
||||
let priority = 1.0;
|
||||
|
||||
// Titres = haute priorité (plus visible)
|
||||
if (tag.includes('Titre') || tag.includes('H1') || tag.includes('H2')) {
|
||||
priority += 0.5;
|
||||
}
|
||||
|
||||
// Textes longs = priorité selon longueur
|
||||
if (text.length > 200) {
|
||||
priority += 0.3;
|
||||
} else if (text.length > 100) {
|
||||
priority += 0.2;
|
||||
}
|
||||
|
||||
// Introduction = haute priorité
|
||||
if (tag.includes('intro') || tag.includes('Introduction')) {
|
||||
priority += 0.4;
|
||||
}
|
||||
|
||||
return priority;
|
||||
}
|
||||
|
||||
/**
|
||||
* Appliquer style en chunks
|
||||
*/
|
||||
async function applyStyleInChunks(styleElements, csvData) {
|
||||
logSh(`🎨 Stylisation: ${styleElements.length} éléments selon ${csvData.personality.nom}`, 'DEBUG');
|
||||
|
||||
const results = {};
|
||||
const chunks = chunkArray(styleElements, 8); // Chunks de 8 pour Mistral
|
||||
|
||||
for (let chunkIndex = 0; chunkIndex < chunks.length; chunkIndex++) {
|
||||
const chunk = chunks[chunkIndex];
|
||||
|
||||
try {
|
||||
logSh(` 📦 Chunk ${chunkIndex + 1}/${chunks.length}: ${chunk.length} éléments`, 'DEBUG');
|
||||
|
||||
const stylePrompt = createStylePrompt(chunk, csvData);
|
||||
|
||||
const styledResponse = await callLLM('mistral', stylePrompt, {
|
||||
temperature: 0.8,
|
||||
maxTokens: 3000
|
||||
}, csvData.personality);
|
||||
|
||||
const chunkResults = parseStyleResponse(styledResponse, chunk);
|
||||
Object.assign(results, chunkResults);
|
||||
|
||||
logSh(` ✅ Chunk ${chunkIndex + 1}: ${Object.keys(chunkResults).length} stylisés`, 'DEBUG');
|
||||
|
||||
// Délai entre chunks
|
||||
if (chunkIndex < chunks.length - 1) {
|
||||
await sleep(1500);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Chunk ${chunkIndex + 1} échoué: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: garder contenu original
|
||||
chunk.forEach(element => {
|
||||
results[element.tag] = element.content;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt de stylisation
|
||||
*/
|
||||
function createStylePrompt(chunk, csvData) {
|
||||
const personality = csvData.personality;
|
||||
|
||||
let prompt = `MISSION: Adapte UNIQUEMENT le style de ces contenus selon ${personality.nom}.
|
||||
|
||||
CONTEXTE: Article SEO e-commerce ${csvData.mc0}
|
||||
PERSONNALITÉ: ${personality.nom}
|
||||
DESCRIPTION: ${personality.description}
|
||||
STYLE: ${personality.style} adapté web professionnel
|
||||
VOCABULAIRE: ${personality.vocabulairePref}
|
||||
CONNECTEURS: ${personality.connecteursPref}
|
||||
NIVEAU TECHNIQUE: ${personality.niveauTechnique}
|
||||
LONGUEUR PHRASES: ${personality.longueurPhrases}
|
||||
|
||||
CONTENUS À STYLISER:
|
||||
|
||||
${chunk.map((item, i) => `[${i + 1}] TAG: ${item.tag} (Priorité: ${item.priority.toFixed(1)})
|
||||
CONTENU: "${item.content}"`).join('\n\n')}
|
||||
|
||||
OBJECTIFS STYLISATION ${personality.nom.toUpperCase()}:
|
||||
- Adapte le TON selon ${personality.style}
|
||||
- Vocabulaire: ${personality.vocabulairePref}
|
||||
- Connecteurs variés: ${personality.connecteursPref}
|
||||
- Phrases: ${personality.longueurPhrases}
|
||||
- Niveau: ${personality.niveauTechnique}
|
||||
|
||||
CONSIGNES STRICTES:
|
||||
- GARDE le même contenu informatif et technique
|
||||
- Adapte SEULEMENT ton, expressions, vocabulaire selon ${personality.nom}
|
||||
- RESPECTE longueur approximative (±20%)
|
||||
- ÉVITE répétitions excessives
|
||||
- Style ${personality.nom} reconnaissable mais NATUREL web
|
||||
- PAS de messages d'excuse
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] Contenu stylisé selon ${personality.nom}
|
||||
[2] Contenu stylisé selon ${personality.nom}
|
||||
etc...`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse stylisation
|
||||
*/
|
||||
function parseStyleResponse(response, chunk) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\n\[\d+\]|$)/gs;
|
||||
let match;
|
||||
let index = 0;
|
||||
|
||||
while ((match = regex.exec(response)) && index < chunk.length) {
|
||||
let styledContent = match[2].trim();
|
||||
const element = chunk[index];
|
||||
|
||||
// Nettoyer le contenu stylisé
|
||||
styledContent = cleanStyledContent(styledContent);
|
||||
|
||||
if (styledContent && styledContent.length > 10) {
|
||||
results[element.tag] = styledContent;
|
||||
logSh(`✅ Styled [${element.tag}]: "${styledContent.substring(0, 100)}..."`, 'DEBUG');
|
||||
} else {
|
||||
results[element.tag] = element.content;
|
||||
logSh(`⚠️ Fallback [${element.tag}]: stylisation invalide`, 'WARNING');
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
// Compléter les manquants
|
||||
while (index < chunk.length) {
|
||||
const element = chunk[index];
|
||||
results[element.tag] = element.content;
|
||||
index++;
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Nettoyer contenu stylisé
|
||||
*/
|
||||
function cleanStyledContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
// Supprimer préfixes indésirables
|
||||
content = content.replace(/^(Bon,?\s*)?(alors,?\s*)?voici\s+/gi, '');
|
||||
content = content.replace(/^pour\s+ce\s+contenu[,\s]*/gi, '');
|
||||
content = content.replace(/\*\*[^*]+\*\*/g, '');
|
||||
|
||||
// Réduire répétitions excessives mais garder le style personnalité
|
||||
content = content.replace(/(du coup[,\s]+){4,}/gi, 'du coup ');
|
||||
content = content.replace(/(bon[,\s]+){4,}/gi, 'bon ');
|
||||
content = content.replace(/(franchement[,\s]+){3,}/gi, 'franchement ');
|
||||
|
||||
content = content.replace(/\s{2,}/g, ' ');
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir instructions de style dynamiques
|
||||
*/
|
||||
function getPersonalityStyleInstructions(personality) {
|
||||
if (!personality) return "Style professionnel standard";
|
||||
|
||||
return `STYLE ${personality.nom.toUpperCase()} (${personality.style}):
|
||||
- Description: ${personality.description}
|
||||
- Vocabulaire: ${personality.vocabulairePref || 'professionnel'}
|
||||
- Connecteurs: ${personality.connecteursPref || 'par ailleurs, en effet'}
|
||||
- Mots-clés: ${personality.motsClesSecteurs || 'technique, qualité'}
|
||||
- Phrases: ${personality.longueurPhrases || 'Moyennes'}
|
||||
- Niveau: ${personality.niveauTechnique || 'Accessible'}
|
||||
- CTA: ${personality.ctaStyle || 'Professionnel'}`;
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
function chunkArray(array, size) {
|
||||
const chunks = [];
|
||||
for (let i = 0; i < array.length; i += size) {
|
||||
chunks.push(array.slice(i, i + size));
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
function sleep(ms) {
|
||||
return new Promise(resolve => setTimeout(resolve, ms));
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
applyPersonalityStyle, // ← MAIN ENTRY POINT
|
||||
prepareElementsForStyling,
|
||||
calculateStylePriority,
|
||||
applyStyleInChunks,
|
||||
createStylePrompt,
|
||||
parseStyleResponse,
|
||||
getPersonalityStyleInstructions
|
||||
};
|
||||
277
lib/generation/TechnicalEnhancement.js
Normal file
277
lib/generation/TechnicalEnhancement.js
Normal file
@ -0,0 +1,277 @@
|
||||
// ========================================
|
||||
// ÉTAPE 2: ENHANCEMENT TECHNIQUE
|
||||
// Responsabilité: Améliorer la précision technique avec GPT-4
|
||||
// LLM: GPT-4o-mini (température 0.4)
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - ENHANCEMENT TECHNIQUE
|
||||
* Input: { content: {}, csvData: {}, context: {} }
|
||||
* Output: { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function enhanceTechnicalTerms(input) {
|
||||
return await tracer.run('TechnicalEnhancement.enhanceTechnicalTerms()', async () => {
|
||||
const { content, csvData, context = {} } = input;
|
||||
|
||||
await tracer.annotate({
|
||||
step: '2/4',
|
||||
llmProvider: 'gpt4',
|
||||
elementsCount: Object.keys(content).length,
|
||||
mc0: csvData.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🔧 ÉTAPE 2/4: Enhancement technique (GPT-4)`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments à analyser`, 'INFO');
|
||||
|
||||
try {
|
||||
// 1. Analyser tous les éléments pour détecter termes techniques
|
||||
const technicalAnalysis = await analyzeTechnicalTerms(content, csvData);
|
||||
|
||||
// 2. Filter les éléments qui ont besoin d'enhancement
|
||||
const elementsNeedingEnhancement = technicalAnalysis.filter(item => item.needsEnhancement);
|
||||
|
||||
logSh(` 📋 Analyse: ${elementsNeedingEnhancement.length}/${Object.keys(content).length} éléments nécessitent enhancement`, 'INFO');
|
||||
|
||||
if (elementsNeedingEnhancement.length === 0) {
|
||||
logSh(`✅ ÉTAPE 2/4: Aucun enhancement nécessaire`, 'INFO');
|
||||
return {
|
||||
content,
|
||||
stats: { processed: Object.keys(content).length, enhanced: 0, duration: Date.now() - startTime },
|
||||
debug: { llmProvider: 'gpt4', step: 2, enhancementsApplied: [] }
|
||||
};
|
||||
}
|
||||
|
||||
// 3. Améliorer les éléments sélectionnés
|
||||
const enhancedResults = await enhanceSelectedElements(elementsNeedingEnhancement, csvData);
|
||||
|
||||
// 4. Merger avec contenu original
|
||||
const finalContent = { ...content };
|
||||
let actuallyEnhanced = 0;
|
||||
|
||||
Object.keys(enhancedResults).forEach(tag => {
|
||||
if (enhancedResults[tag] !== content[tag]) {
|
||||
finalContent[tag] = enhancedResults[tag];
|
||||
actuallyEnhanced++;
|
||||
}
|
||||
});
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: Object.keys(content).length,
|
||||
enhanced: actuallyEnhanced,
|
||||
candidate: elementsNeedingEnhancement.length,
|
||||
duration
|
||||
};
|
||||
|
||||
logSh(`✅ ÉTAPE 2/4 TERMINÉE: ${stats.enhanced} éléments améliorés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event(`Enhancement technique terminé`, stats);
|
||||
|
||||
return {
|
||||
content: finalContent,
|
||||
stats,
|
||||
debug: {
|
||||
llmProvider: 'gpt4',
|
||||
step: 2,
|
||||
enhancementsApplied: Object.keys(enhancedResults),
|
||||
technicalTermsFound: elementsNeedingEnhancement.map(e => e.technicalTerms)
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ ÉTAPE 2/4 ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
throw new Error(`TechnicalEnhancement failed: ${error.message}`);
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser tous les éléments pour détecter termes techniques
|
||||
*/
|
||||
async function analyzeTechnicalTerms(content, csvData) {
|
||||
logSh(`🔍 Analyse termes techniques batch`, 'DEBUG');
|
||||
|
||||
const contentEntries = Object.keys(content);
|
||||
|
||||
const analysisPrompt = `MISSION: Analyser ces ${contentEntries.length} contenus et identifier leurs termes techniques.
|
||||
|
||||
CONTEXTE: ${csvData.mc0} - Secteur: signalétique/impression
|
||||
|
||||
CONTENUS À ANALYSER:
|
||||
|
||||
${contentEntries.map((tag, i) => `[${i + 1}] TAG: ${tag}
|
||||
CONTENU: "${content[tag]}"`).join('\n\n')}
|
||||
|
||||
CONSIGNES:
|
||||
- Identifie UNIQUEMENT les vrais termes techniques métier/industrie
|
||||
- Évite mots génériques (qualité, service, pratique, personnalisé)
|
||||
- Focus: matériaux, procédés, normes, dimensions, technologies
|
||||
- Si aucun terme technique → "AUCUN"
|
||||
|
||||
EXEMPLES VALIDES: dibond, impression UV, fraisage CNC, épaisseur 3mm
|
||||
EXEMPLES INVALIDES: durable, pratique, personnalisé, moderne
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] dibond, impression UV OU AUCUN
|
||||
[2] AUCUN
|
||||
[3] aluminium, fraisage CNC OU AUCUN
|
||||
etc...`;
|
||||
|
||||
try {
|
||||
const analysisResponse = await callLLM('gpt4', analysisPrompt, {
|
||||
temperature: 0.3,
|
||||
maxTokens: 2000
|
||||
}, csvData.personality);
|
||||
|
||||
return parseAnalysisResponse(analysisResponse, content, contentEntries);
|
||||
|
||||
} catch (error) {
|
||||
logSh(`❌ Analyse termes techniques échouée: ${error.message}`, 'ERROR');
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Améliorer les éléments sélectionnés
|
||||
*/
|
||||
async function enhanceSelectedElements(elementsNeedingEnhancement, csvData) {
|
||||
logSh(`🛠️ Enhancement ${elementsNeedingEnhancement.length} éléments`, 'DEBUG');
|
||||
|
||||
const enhancementPrompt = `MISSION: Améliore UNIQUEMENT la précision technique de ces contenus.
|
||||
|
||||
CONTEXTE: ${csvData.mc0} - Secteur signalétique/impression
|
||||
PERSONNALITÉ: ${csvData.personality?.nom} (${csvData.personality?.style})
|
||||
|
||||
CONTENUS À AMÉLIORER:
|
||||
|
||||
${elementsNeedingEnhancement.map((item, i) => `[${i + 1}] TAG: ${item.tag}
|
||||
CONTENU: "${item.content}"
|
||||
TERMES TECHNIQUES: ${item.technicalTerms.join(', ')}`).join('\n\n')}
|
||||
|
||||
CONSIGNES:
|
||||
- GARDE même longueur, structure et ton ${csvData.personality?.style}
|
||||
- Intègre naturellement les termes techniques listés
|
||||
- NE CHANGE PAS le fond du message
|
||||
- Vocabulaire expert mais accessible
|
||||
- Termes secteur: dibond, aluminium, impression UV, fraisage, PMMA
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] Contenu avec amélioration technique
|
||||
[2] Contenu avec amélioration technique
|
||||
etc...`;
|
||||
|
||||
try {
|
||||
const enhancedResponse = await callLLM('gpt4', enhancementPrompt, {
|
||||
temperature: 0.4,
|
||||
maxTokens: 5000
|
||||
}, csvData.personality);
|
||||
|
||||
return parseEnhancementResponse(enhancedResponse, elementsNeedingEnhancement);
|
||||
|
||||
} catch (error) {
|
||||
logSh(`❌ Enhancement éléments échoué: ${error.message}`, 'ERROR');
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse analyse
|
||||
*/
|
||||
function parseAnalysisResponse(response, content, contentEntries) {
|
||||
const results = [];
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\[\d+\]|$)/gs;
|
||||
let match;
|
||||
const parsedItems = {};
|
||||
|
||||
while ((match = regex.exec(response)) !== null) {
|
||||
const index = parseInt(match[1]) - 1;
|
||||
const termsText = match[2].trim();
|
||||
parsedItems[index] = termsText;
|
||||
}
|
||||
|
||||
contentEntries.forEach((tag, index) => {
|
||||
const termsText = parsedItems[index] || 'AUCUN';
|
||||
const hasTerms = !termsText.toUpperCase().includes('AUCUN');
|
||||
|
||||
const technicalTerms = hasTerms ?
|
||||
termsText.split(',').map(t => t.trim()).filter(t => t.length > 0) :
|
||||
[];
|
||||
|
||||
results.push({
|
||||
tag,
|
||||
content: content[tag],
|
||||
technicalTerms,
|
||||
needsEnhancement: hasTerms && technicalTerms.length > 0
|
||||
});
|
||||
|
||||
logSh(`🔍 [${tag}]: ${hasTerms ? technicalTerms.join(', ') : 'aucun terme technique'}`, 'DEBUG');
|
||||
});
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse enhancement
|
||||
*/
|
||||
function parseEnhancementResponse(response, elementsNeedingEnhancement) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\[\d+\]|$)/gs;
|
||||
let match;
|
||||
let index = 0;
|
||||
|
||||
while ((match = regex.exec(response)) && index < elementsNeedingEnhancement.length) {
|
||||
let enhancedContent = match[2].trim();
|
||||
const element = elementsNeedingEnhancement[index];
|
||||
|
||||
// Nettoyer le contenu généré
|
||||
enhancedContent = cleanEnhancedContent(enhancedContent);
|
||||
|
||||
if (enhancedContent && enhancedContent.length > 10) {
|
||||
results[element.tag] = enhancedContent;
|
||||
logSh(`✅ Enhanced [${element.tag}]: "${enhancedContent.substring(0, 100)}..."`, 'DEBUG');
|
||||
} else {
|
||||
results[element.tag] = element.content;
|
||||
logSh(`⚠️ Fallback [${element.tag}]: contenu invalide`, 'WARNING');
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
// Compléter les manquants
|
||||
while (index < elementsNeedingEnhancement.length) {
|
||||
const element = elementsNeedingEnhancement[index];
|
||||
results[element.tag] = element.content;
|
||||
index++;
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Nettoyer contenu amélioré
|
||||
*/
|
||||
function cleanEnhancedContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
// Supprimer préfixes indésirables
|
||||
content = content.replace(/^(Bon,?\s*)?(alors,?\s*)?pour\s+/gi, '');
|
||||
content = content.replace(/\*\*[^*]+\*\*/g, '');
|
||||
content = content.replace(/\s{2,}/g, ' ');
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
enhanceTechnicalTerms, // ← MAIN ENTRY POINT
|
||||
analyzeTechnicalTerms,
|
||||
enhanceSelectedElements,
|
||||
parseAnalysisResponse,
|
||||
parseEnhancementResponse
|
||||
};
|
||||
401
lib/generation/TransitionEnhancement.js
Normal file
401
lib/generation/TransitionEnhancement.js
Normal file
@ -0,0 +1,401 @@
|
||||
// ========================================
|
||||
// ÉTAPE 3: ENHANCEMENT TRANSITIONS
|
||||
// Responsabilité: Améliorer la fluidité avec Gemini
|
||||
// LLM: Gemini (température 0.6)
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - ENHANCEMENT TRANSITIONS
|
||||
* Input: { content: {}, csvData: {}, context: {} }
|
||||
* Output: { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function enhanceTransitions(input) {
|
||||
return await tracer.run('TransitionEnhancement.enhanceTransitions()', async () => {
|
||||
const { content, csvData, context = {} } = input;
|
||||
|
||||
await tracer.annotate({
|
||||
step: '3/4',
|
||||
llmProvider: 'gemini',
|
||||
elementsCount: Object.keys(content).length,
|
||||
mc0: csvData.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🔗 ÉTAPE 3/4: Enhancement transitions (Gemini)`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments à analyser`, 'INFO');
|
||||
|
||||
try {
|
||||
// 1. Analyser quels éléments ont besoin d'amélioration transitions
|
||||
const elementsNeedingTransitions = analyzeTransitionNeeds(content);
|
||||
|
||||
logSh(` 📋 Analyse: ${elementsNeedingTransitions.length}/${Object.keys(content).length} éléments nécessitent fluidité`, 'INFO');
|
||||
|
||||
if (elementsNeedingTransitions.length === 0) {
|
||||
logSh(`✅ ÉTAPE 3/4: Transitions déjà optimales`, 'INFO');
|
||||
return {
|
||||
content,
|
||||
stats: { processed: Object.keys(content).length, enhanced: 0, duration: Date.now() - startTime },
|
||||
debug: { llmProvider: 'gemini', step: 3, enhancementsApplied: [] }
|
||||
};
|
||||
}
|
||||
|
||||
// 2. Améliorer en chunks pour Gemini
|
||||
const improvedResults = await improveTransitionsInChunks(elementsNeedingTransitions, csvData);
|
||||
|
||||
// 3. Merger avec contenu original
|
||||
const finalContent = { ...content };
|
||||
let actuallyImproved = 0;
|
||||
|
||||
Object.keys(improvedResults).forEach(tag => {
|
||||
if (improvedResults[tag] !== content[tag]) {
|
||||
finalContent[tag] = improvedResults[tag];
|
||||
actuallyImproved++;
|
||||
}
|
||||
});
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: Object.keys(content).length,
|
||||
enhanced: actuallyImproved,
|
||||
candidate: elementsNeedingTransitions.length,
|
||||
duration
|
||||
};
|
||||
|
||||
logSh(`✅ ÉTAPE 3/4 TERMINÉE: ${stats.enhanced} éléments fluidifiés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event(`Enhancement transitions terminé`, stats);
|
||||
|
||||
return {
|
||||
content: finalContent,
|
||||
stats,
|
||||
debug: {
|
||||
llmProvider: 'gemini',
|
||||
step: 3,
|
||||
enhancementsApplied: Object.keys(improvedResults),
|
||||
transitionIssues: elementsNeedingTransitions.map(e => e.issues)
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ ÉTAPE 3/4 ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: retourner contenu original si Gemini indisponible
|
||||
logSh(`🔄 Fallback: contenu original conservé`, 'WARNING');
|
||||
return {
|
||||
content,
|
||||
stats: { processed: Object.keys(content).length, enhanced: 0, duration },
|
||||
debug: { llmProvider: 'gemini', step: 3, error: error.message, fallback: true }
|
||||
};
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser besoin d'amélioration transitions
|
||||
*/
|
||||
function analyzeTransitionNeeds(content) {
|
||||
const elementsNeedingTransitions = [];
|
||||
|
||||
Object.keys(content).forEach(tag => {
|
||||
const text = content[tag];
|
||||
|
||||
// Filtrer les éléments longs (>150 chars) qui peuvent bénéficier d'améliorations
|
||||
if (text.length > 150) {
|
||||
const needsTransitions = evaluateTransitionQuality(text);
|
||||
|
||||
if (needsTransitions.needsImprovement) {
|
||||
elementsNeedingTransitions.push({
|
||||
tag,
|
||||
content: text,
|
||||
issues: needsTransitions.issues,
|
||||
score: needsTransitions.score
|
||||
});
|
||||
|
||||
logSh(` 🔍 [${tag}]: Score=${needsTransitions.score.toFixed(2)}, Issues: ${needsTransitions.issues.join(', ')}`, 'DEBUG');
|
||||
}
|
||||
} else {
|
||||
logSh(` ⏭️ [${tag}]: Trop court (${text.length}c), ignoré`, 'DEBUG');
|
||||
}
|
||||
});
|
||||
|
||||
// Trier par score (plus problématique en premier)
|
||||
elementsNeedingTransitions.sort((a, b) => a.score - b.score);
|
||||
|
||||
return elementsNeedingTransitions;
|
||||
}
|
||||
|
||||
/**
|
||||
* Évaluer qualité transitions d'un texte
|
||||
*/
|
||||
function evaluateTransitionQuality(text) {
|
||||
const sentences = text.split(/[.!?]+/).filter(s => s.trim().length > 10);
|
||||
|
||||
if (sentences.length < 2) {
|
||||
return { needsImprovement: false, score: 1.0, issues: [] };
|
||||
}
|
||||
|
||||
const issues = [];
|
||||
let score = 1.0; // Score parfait = 1.0, problématique = 0.0
|
||||
|
||||
// Analyse 1: Connecteurs répétitifs
|
||||
const repetitiveConnectors = analyzeRepetitiveConnectors(text);
|
||||
if (repetitiveConnectors > 0.3) {
|
||||
issues.push('connecteurs_répétitifs');
|
||||
score -= 0.3;
|
||||
}
|
||||
|
||||
// Analyse 2: Transitions abruptes
|
||||
const abruptTransitions = analyzeAbruptTransitions(sentences);
|
||||
if (abruptTransitions > 0.4) {
|
||||
issues.push('transitions_abruptes');
|
||||
score -= 0.4;
|
||||
}
|
||||
|
||||
// Analyse 3: Manque de variété dans longueurs
|
||||
const sentenceVariety = analyzeSentenceVariety(sentences);
|
||||
if (sentenceVariety < 0.3) {
|
||||
issues.push('phrases_uniformes');
|
||||
score -= 0.2;
|
||||
}
|
||||
|
||||
// Analyse 4: Trop formel ou trop familier
|
||||
const formalityIssues = analyzeFormalityBalance(text);
|
||||
if (formalityIssues > 0.5) {
|
||||
issues.push('formalité_déséquilibrée');
|
||||
score -= 0.1;
|
||||
}
|
||||
|
||||
return {
|
||||
needsImprovement: score < 0.6,
|
||||
score: Math.max(0, score),
|
||||
issues
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Améliorer transitions en chunks
|
||||
*/
|
||||
async function improveTransitionsInChunks(elementsNeedingTransitions, csvData) {
|
||||
logSh(`🔄 Amélioration transitions: ${elementsNeedingTransitions.length} éléments`, 'DEBUG');
|
||||
|
||||
const results = {};
|
||||
const chunks = chunkArray(elementsNeedingTransitions, 6); // Chunks plus petits pour Gemini
|
||||
|
||||
for (let chunkIndex = 0; chunkIndex < chunks.length; chunkIndex++) {
|
||||
const chunk = chunks[chunkIndex];
|
||||
|
||||
try {
|
||||
logSh(` 📦 Chunk ${chunkIndex + 1}/${chunks.length}: ${chunk.length} éléments`, 'DEBUG');
|
||||
|
||||
const improvementPrompt = createTransitionImprovementPrompt(chunk, csvData);
|
||||
|
||||
const improvedResponse = await callLLM('gemini', improvementPrompt, {
|
||||
temperature: 0.6,
|
||||
maxTokens: 2500
|
||||
}, csvData.personality);
|
||||
|
||||
const chunkResults = parseTransitionResponse(improvedResponse, chunk);
|
||||
Object.assign(results, chunkResults);
|
||||
|
||||
logSh(` ✅ Chunk ${chunkIndex + 1}: ${Object.keys(chunkResults).length} améliorés`, 'DEBUG');
|
||||
|
||||
// Délai entre chunks
|
||||
if (chunkIndex < chunks.length - 1) {
|
||||
await sleep(1500);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Chunk ${chunkIndex + 1} échoué: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: garder contenu original pour ce chunk
|
||||
chunk.forEach(element => {
|
||||
results[element.tag] = element.content;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt amélioration transitions
|
||||
*/
|
||||
function createTransitionImprovementPrompt(chunk, csvData) {
|
||||
const personality = csvData.personality;
|
||||
|
||||
let prompt = `MISSION: Améliore UNIQUEMENT les transitions et fluidité de ces contenus.
|
||||
|
||||
CONTEXTE: Article SEO ${csvData.mc0}
|
||||
PERSONNALITÉ: ${personality?.nom} (${personality?.style} web professionnel)
|
||||
CONNECTEURS PRÉFÉRÉS: ${personality?.connecteursPref}
|
||||
|
||||
CONTENUS À FLUIDIFIER:
|
||||
|
||||
${chunk.map((item, i) => `[${i + 1}] TAG: ${item.tag}
|
||||
PROBLÈMES: ${item.issues.join(', ')}
|
||||
CONTENU: "${item.content}"`).join('\n\n')}
|
||||
|
||||
OBJECTIFS:
|
||||
- Connecteurs plus naturels et variés: ${personality?.connecteursPref}
|
||||
- Transitions fluides entre idées
|
||||
- ÉVITE répétitions excessives ("du coup", "franchement", "par ailleurs")
|
||||
- Style ${personality?.style} mais professionnel web
|
||||
|
||||
CONSIGNES STRICTES:
|
||||
- NE CHANGE PAS le fond du message
|
||||
- GARDE même structure et longueur
|
||||
- Améliore SEULEMENT la fluidité
|
||||
- RESPECTE le style ${personality?.nom}
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] Contenu avec transitions améliorées
|
||||
[2] Contenu avec transitions améliorées
|
||||
etc...`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse amélioration transitions
|
||||
*/
|
||||
function parseTransitionResponse(response, chunk) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\n\[\d+\]|$)/gs;
|
||||
let match;
|
||||
let index = 0;
|
||||
|
||||
while ((match = regex.exec(response)) && index < chunk.length) {
|
||||
let improvedContent = match[2].trim();
|
||||
const element = chunk[index];
|
||||
|
||||
// Nettoyer le contenu amélioré
|
||||
improvedContent = cleanImprovedContent(improvedContent);
|
||||
|
||||
if (improvedContent && improvedContent.length > 10) {
|
||||
results[element.tag] = improvedContent;
|
||||
logSh(`✅ Improved [${element.tag}]: "${improvedContent.substring(0, 100)}..."`, 'DEBUG');
|
||||
} else {
|
||||
results[element.tag] = element.content;
|
||||
logSh(`⚠️ Fallback [${element.tag}]: amélioration invalide`, 'WARNING');
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
// Compléter les manquants
|
||||
while (index < chunk.length) {
|
||||
const element = chunk[index];
|
||||
results[element.tag] = element.content;
|
||||
index++;
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
function analyzeRepetitiveConnectors(content) {
|
||||
const connectors = ['par ailleurs', 'en effet', 'de plus', 'cependant', 'ainsi', 'donc'];
|
||||
let totalConnectors = 0;
|
||||
let repetitions = 0;
|
||||
|
||||
connectors.forEach(connector => {
|
||||
const matches = (content.match(new RegExp(`\\b${connector}\\b`, 'gi')) || []);
|
||||
totalConnectors += matches.length;
|
||||
if (matches.length > 1) repetitions += matches.length - 1;
|
||||
});
|
||||
|
||||
return totalConnectors > 0 ? repetitions / totalConnectors : 0;
|
||||
}
|
||||
|
||||
function analyzeAbruptTransitions(sentences) {
|
||||
if (sentences.length < 2) return 0;
|
||||
|
||||
let abruptCount = 0;
|
||||
|
||||
for (let i = 1; i < sentences.length; i++) {
|
||||
const current = sentences[i].trim();
|
||||
const hasConnector = hasTransitionWord(current);
|
||||
|
||||
if (!hasConnector && current.length > 30) {
|
||||
abruptCount++;
|
||||
}
|
||||
}
|
||||
|
||||
return abruptCount / (sentences.length - 1);
|
||||
}
|
||||
|
||||
function analyzeSentenceVariety(sentences) {
|
||||
if (sentences.length < 2) return 1;
|
||||
|
||||
const lengths = sentences.map(s => s.trim().length);
|
||||
const avgLength = lengths.reduce((a, b) => a + b, 0) / lengths.length;
|
||||
const variance = lengths.reduce((acc, len) => acc + Math.pow(len - avgLength, 2), 0) / lengths.length;
|
||||
const stdDev = Math.sqrt(variance);
|
||||
|
||||
return Math.min(1, stdDev / avgLength);
|
||||
}
|
||||
|
||||
function analyzeFormalityBalance(content) {
|
||||
const formalIndicators = ['il convient de', 'par conséquent', 'néanmoins', 'toutefois'];
|
||||
const casualIndicators = ['du coup', 'bon', 'franchement', 'nickel'];
|
||||
|
||||
let formalCount = 0;
|
||||
let casualCount = 0;
|
||||
|
||||
formalIndicators.forEach(indicator => {
|
||||
if (content.toLowerCase().includes(indicator)) formalCount++;
|
||||
});
|
||||
|
||||
casualIndicators.forEach(indicator => {
|
||||
if (content.toLowerCase().includes(indicator)) casualCount++;
|
||||
});
|
||||
|
||||
const total = formalCount + casualCount;
|
||||
if (total === 0) return 0;
|
||||
|
||||
// Déséquilibre si trop d'un côté
|
||||
const balance = Math.abs(formalCount - casualCount) / total;
|
||||
return balance;
|
||||
}
|
||||
|
||||
function hasTransitionWord(sentence) {
|
||||
const connectors = ['par ailleurs', 'en effet', 'de plus', 'cependant', 'ainsi', 'donc', 'ensuite', 'puis', 'également', 'aussi'];
|
||||
return connectors.some(connector => sentence.toLowerCase().includes(connector));
|
||||
}
|
||||
|
||||
function cleanImprovedContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
content = content.replace(/^(Bon,?\s*)?(alors,?\s*)?/, '');
|
||||
content = content.replace(/\s{2,}/g, ' ');
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
function chunkArray(array, size) {
|
||||
const chunks = [];
|
||||
for (let i = 0; i < array.length; i += size) {
|
||||
chunks.push(array.slice(i, i + size));
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
function sleep(ms) {
|
||||
return new Promise(resolve => setTimeout(resolve, ms));
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
enhanceTransitions, // ← MAIN ENTRY POINT
|
||||
analyzeTransitionNeeds,
|
||||
evaluateTransitionQuality,
|
||||
improveTransitionsInChunks,
|
||||
createTransitionImprovementPrompt,
|
||||
parseTransitionResponse
|
||||
};
|
||||
422
lib/main_modulaire.js
Normal file
422
lib/main_modulaire.js
Normal file
@ -0,0 +1,422 @@
|
||||
// ========================================
|
||||
// MAIN MODULAIRE - PIPELINE ARCHITECTURALE MODERNE
|
||||
// Responsabilité: Orchestration workflow avec architecture modulaire complète
|
||||
// Usage: node main_modulaire.js [rowNumber] [stackType]
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('./lib/ErrorReporting');
|
||||
const { tracer } = require('./lib/trace');
|
||||
|
||||
// Imports pipeline de base
|
||||
const { readInstructionsData, selectPersonalityWithAI, getPersonalities } = require('./lib/BrainConfig');
|
||||
const { extractElementsFromXML } = require('./lib/ElementExtraction');
|
||||
const { generateMissingKeywords } = require('./lib/MissingKeywords');
|
||||
const { generateDirectElements } = require('./lib/generation/DirectGeneration');
|
||||
const { injectContentIntoTemplate } = require('./lib/ContentAssembly');
|
||||
const { compileAndStoreArticle } = require('./lib/ArticleStorage');
|
||||
|
||||
// Imports modules modulaires
|
||||
const { applySelectiveLayer } = require('./lib/selective-enhancement/SelectiveCore');
|
||||
const {
|
||||
applyPredefinedStack,
|
||||
applyAdaptiveLayers,
|
||||
getAvailableStacks
|
||||
} = require('./lib/selective-enhancement/SelectiveLayers');
|
||||
const {
|
||||
applyAdversarialLayer
|
||||
} = require('./lib/adversarial-generation/AdversarialCore');
|
||||
const {
|
||||
applyPredefinedStack: applyAdversarialStack
|
||||
} = require('./lib/adversarial-generation/AdversarialLayers');
|
||||
|
||||
/**
|
||||
* WORKFLOW MODULAIRE PRINCIPAL
|
||||
*/
|
||||
async function handleModularWorkflow(config = {}) {
|
||||
return await tracer.run('MainModulaire.handleModularWorkflow()', async () => {
|
||||
const {
|
||||
rowNumber = 2,
|
||||
selectiveStack = 'standardEnhancement', // lightEnhancement, standardEnhancement, fullEnhancement, personalityFocus, fluidityFocus, adaptive
|
||||
adversarialMode = 'light', // none, light, standard, heavy, adaptive
|
||||
source = 'main_modulaire'
|
||||
} = config;
|
||||
|
||||
await tracer.annotate({
|
||||
modularWorkflow: true,
|
||||
rowNumber,
|
||||
selectiveStack,
|
||||
adversarialMode,
|
||||
source
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🚀 WORKFLOW MODULAIRE DÉMARRÉ`, 'INFO');
|
||||
logSh(` 📊 Ligne: ${rowNumber} | Selective: ${selectiveStack} | Adversarial: ${adversarialMode}`, 'INFO');
|
||||
|
||||
try {
|
||||
// ========================================
|
||||
// PHASE 1: PRÉPARATION DONNÉES
|
||||
// ========================================
|
||||
logSh(`📋 PHASE 1: Préparation données`, 'INFO');
|
||||
|
||||
const csvData = await readInstructionsData(rowNumber);
|
||||
if (!csvData) {
|
||||
throw new Error(`Impossible de lire les données ligne ${rowNumber}`);
|
||||
}
|
||||
|
||||
const personalities = await getPersonalities();
|
||||
const selectedPersonality = await selectPersonalityWithAI(
|
||||
csvData.mc0,
|
||||
csvData.t0,
|
||||
personalities
|
||||
);
|
||||
|
||||
csvData.personality = selectedPersonality;
|
||||
|
||||
logSh(` ✅ Données: ${csvData.mc0} | Personnalité: ${selectedPersonality.nom}`, 'DEBUG');
|
||||
|
||||
// ========================================
|
||||
// PHASE 2: EXTRACTION ÉLÉMENTS
|
||||
// ========================================
|
||||
logSh(`📝 PHASE 2: Extraction éléments XML`, 'INFO');
|
||||
|
||||
const elements = await extractElementsFromXML(csvData.xmlTemplate);
|
||||
logSh(` ✅ ${Object.keys(elements).length} éléments extraits`, 'DEBUG');
|
||||
|
||||
// ========================================
|
||||
// PHASE 3: GÉNÉRATION MOTS-CLÉS MANQUANTS
|
||||
// ========================================
|
||||
logSh(`🔍 PHASE 3: Génération mots-clés manquants`, 'INFO');
|
||||
|
||||
const enhancedCsvData = await generateMissingKeywords(csvData);
|
||||
logSh(` ✅ Mots-clés complétés`, 'DEBUG');
|
||||
|
||||
// ========================================
|
||||
// PHASE 4: GÉNÉRATION CONTENU DE BASE
|
||||
// ========================================
|
||||
logSh(`💫 PHASE 4: Génération contenu de base`, 'INFO');
|
||||
|
||||
const generatedContent = await generateDirectElements(elements, enhancedCsvData, {
|
||||
source: 'main_modulaire',
|
||||
usePersonality: true
|
||||
});
|
||||
|
||||
logSh(` ✅ ${Object.keys(generatedContent).length} éléments générés`, 'DEBUG');
|
||||
|
||||
// ========================================
|
||||
// PHASE 5: SELECTIVE ENHANCEMENT MODULAIRE
|
||||
// ========================================
|
||||
logSh(`🔧 PHASE 5: Selective Enhancement Modulaire (${selectiveStack})`, 'INFO');
|
||||
|
||||
let selectiveResult;
|
||||
|
||||
switch (selectiveStack) {
|
||||
case 'adaptive':
|
||||
selectiveResult = await applyAdaptiveLayers(generatedContent, {
|
||||
maxIntensity: 1.1,
|
||||
analysisThreshold: 0.3,
|
||||
csvData: enhancedCsvData
|
||||
});
|
||||
break;
|
||||
|
||||
case 'technical':
|
||||
case 'transitions':
|
||||
case 'style':
|
||||
selectiveResult = await applySelectiveLayer(generatedContent, {
|
||||
layerType: selectiveStack,
|
||||
llmProvider: 'auto',
|
||||
intensity: 1.0,
|
||||
csvData: enhancedCsvData
|
||||
});
|
||||
break;
|
||||
|
||||
default:
|
||||
// Stack prédéfini
|
||||
selectiveResult = await applyPredefinedStack(generatedContent, selectiveStack, {
|
||||
csvData: enhancedCsvData,
|
||||
analysisMode: true
|
||||
});
|
||||
}
|
||||
|
||||
const enhancedContent = selectiveResult.content;
|
||||
|
||||
logSh(` ✅ Selective: ${selectiveResult.stats.elementsEnhanced || selectiveResult.stats.totalModifications || 0} améliorations`, 'INFO');
|
||||
|
||||
// ========================================
|
||||
// PHASE 6: ADVERSARIAL ENHANCEMENT (OPTIONNEL)
|
||||
// ========================================
|
||||
let finalContent = enhancedContent;
|
||||
let adversarialStats = null;
|
||||
|
||||
if (adversarialMode !== 'none') {
|
||||
logSh(`🎯 PHASE 6: Adversarial Enhancement (${adversarialMode})`, 'INFO');
|
||||
|
||||
let adversarialResult;
|
||||
|
||||
switch (adversarialMode) {
|
||||
case 'adaptive':
|
||||
// Utiliser adversarial adaptatif
|
||||
adversarialResult = await applyAdversarialLayer(enhancedContent, {
|
||||
detectorTarget: 'general',
|
||||
method: 'hybrid',
|
||||
intensity: 0.8,
|
||||
analysisMode: true
|
||||
});
|
||||
break;
|
||||
|
||||
case 'light':
|
||||
case 'standard':
|
||||
case 'heavy':
|
||||
// Utiliser stack adversarial prédéfini
|
||||
const stackMapping = {
|
||||
light: 'lightDefense',
|
||||
standard: 'standardDefense',
|
||||
heavy: 'heavyDefense'
|
||||
};
|
||||
|
||||
adversarialResult = await applyAdversarialStack(enhancedContent, stackMapping[adversarialMode], {
|
||||
csvData: enhancedCsvData
|
||||
});
|
||||
break;
|
||||
}
|
||||
|
||||
if (adversarialResult && !adversarialResult.fallback) {
|
||||
finalContent = adversarialResult.content;
|
||||
adversarialStats = adversarialResult.stats;
|
||||
|
||||
logSh(` ✅ Adversarial: ${adversarialStats.elementsModified || adversarialStats.totalModifications || 0} modifications`, 'INFO');
|
||||
} else {
|
||||
logSh(` ⚠️ Adversarial fallback: contenu selective préservé`, 'WARNING');
|
||||
}
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// PHASE 7: ASSEMBLAGE ET STOCKAGE
|
||||
// ========================================
|
||||
logSh(`🔗 PHASE 7: Assemblage et stockage`, 'INFO');
|
||||
|
||||
const assembledContent = await injectContentIntoTemplate(finalContent, enhancedCsvData.xmlTemplate);
|
||||
|
||||
const storageResult = await compileAndStoreArticle(assembledContent, {
|
||||
...enhancedCsvData,
|
||||
source: `${source}_${selectiveStack}${adversarialMode !== 'none' ? `_${adversarialMode}` : ''}`
|
||||
});
|
||||
|
||||
logSh(` ✅ Stocké: ${storageResult.compiledLength} caractères`, 'DEBUG');
|
||||
|
||||
// ========================================
|
||||
// RÉSUMÉ FINAL
|
||||
// ========================================
|
||||
const totalDuration = Date.now() - startTime;
|
||||
const finalStats = {
|
||||
rowNumber,
|
||||
selectiveStack,
|
||||
adversarialMode,
|
||||
totalDuration,
|
||||
elementsGenerated: Object.keys(generatedContent).length,
|
||||
selectiveEnhancements: selectiveResult.stats.elementsEnhanced || selectiveResult.stats.totalModifications || 0,
|
||||
adversarialModifications: adversarialStats?.elementsModified || adversarialStats?.totalModifications || 0,
|
||||
finalLength: storageResult.compiledLength,
|
||||
personality: selectedPersonality.nom,
|
||||
source
|
||||
};
|
||||
|
||||
logSh(`✅ WORKFLOW MODULAIRE TERMINÉ (${totalDuration}ms)`, 'INFO');
|
||||
logSh(` 📊 ${finalStats.elementsGenerated} générés | ${finalStats.selectiveEnhancements} selective | ${finalStats.adversarialModifications} adversarial`, 'INFO');
|
||||
logSh(` 🎭 Personnalité: ${finalStats.personality} | Taille finale: ${finalStats.finalLength} chars`, 'INFO');
|
||||
|
||||
await tracer.event('Workflow modulaire terminé', finalStats);
|
||||
|
||||
return {
|
||||
success: true,
|
||||
stats: finalStats,
|
||||
content: finalContent,
|
||||
assembledContent,
|
||||
storageResult,
|
||||
selectiveResult,
|
||||
adversarialResult: adversarialStats ? { stats: adversarialStats } : null
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ WORKFLOW MODULAIRE ÉCHOUÉ après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
logSh(`Stack trace: ${error.stack}`, 'ERROR');
|
||||
|
||||
await tracer.event('Workflow modulaire échoué', {
|
||||
error: error.message,
|
||||
duration,
|
||||
rowNumber,
|
||||
selectiveStack,
|
||||
adversarialMode
|
||||
});
|
||||
|
||||
throw error;
|
||||
}
|
||||
}, { config });
|
||||
}
|
||||
|
||||
/**
|
||||
* BENCHMARK COMPARATIF STACKS
|
||||
*/
|
||||
async function benchmarkStacks(rowNumber = 2) {
|
||||
console.log('\n⚡ === BENCHMARK STACKS MODULAIRES ===\n');
|
||||
|
||||
const stacks = getAvailableStacks();
|
||||
const adversarialModes = ['none', 'light', 'standard'];
|
||||
|
||||
const results = [];
|
||||
|
||||
for (const stack of stacks.slice(0, 3)) { // Tester 3 stacks principaux
|
||||
for (const advMode of adversarialModes.slice(0, 2)) { // 2 modes adversarial
|
||||
|
||||
console.log(`🧪 Test: ${stack.name} + adversarial ${advMode}`);
|
||||
|
||||
try {
|
||||
const startTime = Date.now();
|
||||
|
||||
const result = await handleModularWorkflow({
|
||||
rowNumber,
|
||||
selectiveStack: stack.name,
|
||||
adversarialMode: advMode,
|
||||
source: 'benchmark'
|
||||
});
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
|
||||
results.push({
|
||||
stack: stack.name,
|
||||
adversarial: advMode,
|
||||
duration,
|
||||
success: true,
|
||||
selectiveEnhancements: result.stats.selectiveEnhancements,
|
||||
adversarialModifications: result.stats.adversarialModifications,
|
||||
finalLength: result.stats.finalLength
|
||||
});
|
||||
|
||||
console.log(` ✅ ${duration}ms | ${result.stats.selectiveEnhancements} selective | ${result.stats.adversarialModifications} adversarial`);
|
||||
|
||||
} catch (error) {
|
||||
results.push({
|
||||
stack: stack.name,
|
||||
adversarial: advMode,
|
||||
success: false,
|
||||
error: error.message
|
||||
});
|
||||
|
||||
console.log(` ❌ Échoué: ${error.message}`);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Résumé benchmark
|
||||
console.log('\n📊 RÉSUMÉ BENCHMARK:');
|
||||
|
||||
const successful = results.filter(r => r.success);
|
||||
if (successful.length > 0) {
|
||||
const avgDuration = successful.reduce((sum, r) => sum + r.duration, 0) / successful.length;
|
||||
const bestPerf = successful.reduce((best, r) => r.duration < best.duration ? r : best);
|
||||
const mostEnhancements = successful.reduce((best, r) =>
|
||||
(r.selectiveEnhancements + r.adversarialModifications) > (best.selectiveEnhancements + best.adversarialModifications) ? r : best
|
||||
);
|
||||
|
||||
console.log(` ⚡ Durée moyenne: ${avgDuration.toFixed(0)}ms`);
|
||||
console.log(` 🏆 Meilleure perf: ${bestPerf.stack} + ${bestPerf.adversarial} (${bestPerf.duration}ms)`);
|
||||
console.log(` 🔥 Plus d'améliorations: ${mostEnhancements.stack} + ${mostEnhancements.adversarial} (${mostEnhancements.selectiveEnhancements + mostEnhancements.adversarialModifications})`);
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* INTERFACE LIGNE DE COMMANDE
|
||||
*/
|
||||
async function main() {
|
||||
const args = process.argv.slice(2);
|
||||
const command = args[0] || 'workflow';
|
||||
|
||||
try {
|
||||
switch (command) {
|
||||
case 'workflow':
|
||||
const rowNumber = parseInt(args[1]) || 2;
|
||||
const selectiveStack = args[2] || 'standardEnhancement';
|
||||
const adversarialMode = args[3] || 'light';
|
||||
|
||||
console.log(`\n🚀 Exécution workflow modulaire:`);
|
||||
console.log(` 📊 Ligne: ${rowNumber}`);
|
||||
console.log(` 🔧 Stack selective: ${selectiveStack}`);
|
||||
console.log(` 🎯 Mode adversarial: ${adversarialMode}`);
|
||||
|
||||
const result = await handleModularWorkflow({
|
||||
rowNumber,
|
||||
selectiveStack,
|
||||
adversarialMode
|
||||
});
|
||||
|
||||
console.log('\n✅ WORKFLOW MODULAIRE RÉUSSI');
|
||||
console.log(`📈 Stats: ${JSON.stringify(result.stats, null, 2)}`);
|
||||
break;
|
||||
|
||||
case 'benchmark':
|
||||
const benchRowNumber = parseInt(args[1]) || 2;
|
||||
|
||||
console.log(`\n⚡ Benchmark stacks (ligne ${benchRowNumber})`);
|
||||
const benchResults = await benchmarkStacks(benchRowNumber);
|
||||
|
||||
console.log('\n📊 Résultats complets:');
|
||||
console.table(benchResults);
|
||||
break;
|
||||
|
||||
case 'stacks':
|
||||
console.log('\n📦 STACKS SELECTIVE DISPONIBLES:');
|
||||
const availableStacks = getAvailableStacks();
|
||||
availableStacks.forEach(stack => {
|
||||
console.log(`\n 🔧 ${stack.name}:`);
|
||||
console.log(` 📝 ${stack.description}`);
|
||||
console.log(` 📊 ${stack.layersCount} couches`);
|
||||
console.log(` 🎯 Couches: ${stack.layers ? stack.layers.map(l => `${l.type}(${l.llm})`).join(' → ') : 'N/A'}`);
|
||||
});
|
||||
|
||||
console.log('\n🎯 MODES ADVERSARIAL DISPONIBLES:');
|
||||
console.log(' - none: Pas d\'adversarial');
|
||||
console.log(' - light: Défense légère');
|
||||
console.log(' - standard: Défense standard');
|
||||
console.log(' - heavy: Défense intensive');
|
||||
console.log(' - adaptive: Adaptatif intelligent');
|
||||
break;
|
||||
|
||||
case 'help':
|
||||
default:
|
||||
console.log('\n🔧 === MAIN MODULAIRE - USAGE ===');
|
||||
console.log('\nCommandes disponibles:');
|
||||
console.log(' workflow [ligne] [stack] [adversarial] - Exécuter workflow complet');
|
||||
console.log(' benchmark [ligne] - Benchmark stacks');
|
||||
console.log(' stacks - Lister stacks disponibles');
|
||||
console.log(' help - Afficher cette aide');
|
||||
console.log('\nExemples:');
|
||||
console.log(' node main_modulaire.js workflow 2 fullEnhancement standard');
|
||||
console.log(' node main_modulaire.js workflow 3 adaptive light');
|
||||
console.log(' node main_modulaire.js benchmark 2');
|
||||
console.log(' node main_modulaire.js stacks');
|
||||
break;
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
console.error('\n❌ ERREUR MAIN MODULAIRE:', error.message);
|
||||
console.error(error.stack);
|
||||
process.exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
// Export pour usage programmatique
|
||||
module.exports = {
|
||||
handleModularWorkflow,
|
||||
benchmarkStacks
|
||||
};
|
||||
|
||||
// Exécution CLI si appelé directement
|
||||
if (require.main === module) {
|
||||
main().catch(error => {
|
||||
console.error('❌ ERREUR FATALE:', error.message);
|
||||
process.exit(1);
|
||||
});
|
||||
}
|
||||
449
lib/post-processing/LLMFingerprintRemoval.js
Normal file
449
lib/post-processing/LLMFingerprintRemoval.js
Normal file
@ -0,0 +1,449 @@
|
||||
// ========================================
|
||||
// PATTERN BREAKING - TECHNIQUE 2: LLM FINGERPRINT REMOVAL
|
||||
// Responsabilité: Remplacer mots/expressions typiques des LLMs
|
||||
// Anti-détection: Éviter vocabulaire détectable par les analyseurs IA
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* DICTIONNAIRE ANTI-DÉTECTION
|
||||
* Mots/expressions LLM → Alternatives humaines naturelles
|
||||
*/
|
||||
const LLM_FINGERPRINTS = {
|
||||
// Mots techniques/corporate typiques IA
|
||||
'optimal': ['idéal', 'parfait', 'adapté', 'approprié', 'convenable'],
|
||||
'optimale': ['idéale', 'parfaite', 'adaptée', 'appropriée', 'convenable'],
|
||||
'comprehensive': ['complet', 'détaillé', 'exhaustif', 'approfondi', 'global'],
|
||||
'seamless': ['fluide', 'naturel', 'sans accroc', 'harmonieux', 'lisse'],
|
||||
'robust': ['solide', 'fiable', 'résistant', 'costaud', 'stable'],
|
||||
'robuste': ['solide', 'fiable', 'résistant', 'costaud', 'stable'],
|
||||
|
||||
// Expressions trop formelles/IA
|
||||
'il convient de noter': ['on remarque', 'il faut savoir', 'à noter', 'important'],
|
||||
'il convient de': ['il faut', 'on doit', 'mieux vaut', 'il est bon de'],
|
||||
'par conséquent': ['du coup', 'donc', 'résultat', 'ainsi'],
|
||||
'néanmoins': ['cependant', 'mais', 'pourtant', 'malgré tout'],
|
||||
'toutefois': ['cependant', 'mais', 'pourtant', 'quand même'],
|
||||
'de surcroît': ['de plus', 'en plus', 'aussi', 'également'],
|
||||
|
||||
// Superlatifs excessifs typiques IA
|
||||
'extrêmement': ['très', 'super', 'vraiment', 'particulièrement'],
|
||||
'particulièrement': ['très', 'vraiment', 'spécialement', 'surtout'],
|
||||
'remarquablement': ['très', 'vraiment', 'sacrément', 'fichement'],
|
||||
'exceptionnellement': ['très', 'vraiment', 'super', 'incroyablement'],
|
||||
|
||||
// Mots de liaison trop mécaniques
|
||||
'en définitive': ['au final', 'finalement', 'bref', 'en gros'],
|
||||
'il s\'avère que': ['on voit que', 'il se trouve que', 'en fait'],
|
||||
'force est de constater': ['on constate', 'on voit bien', 'c\'est clair'],
|
||||
|
||||
// Expressions commerciales robotiques
|
||||
'solution innovante': ['nouveauté', 'innovation', 'solution moderne', 'nouvelle approche'],
|
||||
'approche holistique': ['approche globale', 'vision d\'ensemble', 'approche complète'],
|
||||
'expérience utilisateur': ['confort d\'utilisation', 'facilité d\'usage', 'ergonomie'],
|
||||
'retour sur investissement': ['rentabilité', 'bénéfices', 'profits'],
|
||||
|
||||
// Adjectifs surutilisés par IA
|
||||
'révolutionnaire': ['nouveau', 'moderne', 'innovant', 'original'],
|
||||
'game-changer': ['nouveauté', 'innovation', 'changement', 'révolution'],
|
||||
'cutting-edge': ['moderne', 'récent', 'nouveau', 'avancé'],
|
||||
'state-of-the-art': ['moderne', 'récent', 'performant', 'haut de gamme']
|
||||
};
|
||||
|
||||
/**
|
||||
* EXPRESSIONS CONTEXTUELLES SECTEUR SIGNALÉTIQUE
|
||||
* Adaptées au domaine métier pour plus de naturel
|
||||
*/
|
||||
const CONTEXTUAL_REPLACEMENTS = {
|
||||
'solution': {
|
||||
'signalétique': ['plaque', 'panneau', 'support', 'réalisation'],
|
||||
'impression': ['tirage', 'print', 'production', 'fabrication'],
|
||||
'default': ['option', 'possibilité', 'choix', 'alternative']
|
||||
},
|
||||
'produit': {
|
||||
'signalétique': ['plaque', 'panneau', 'enseigne', 'support'],
|
||||
'default': ['article', 'réalisation', 'création']
|
||||
},
|
||||
'service': {
|
||||
'signalétique': ['prestation', 'réalisation', 'travail', 'création'],
|
||||
'default': ['prestation', 'travail', 'aide']
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - SUPPRESSION EMPREINTES LLM
|
||||
* @param {Object} input - { content: {}, config: {}, context: {} }
|
||||
* @returns {Object} - { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function removeLLMFingerprints(input) {
|
||||
return await tracer.run('LLMFingerprintRemoval.removeLLMFingerprints()', async () => {
|
||||
const { content, config = {}, context = {} } = input;
|
||||
|
||||
const {
|
||||
intensity = 1.0, // Probabilité de remplacement (100%)
|
||||
preserveKeywords = true, // Préserver mots-clés SEO
|
||||
contextualMode = true, // Mode contextuel métier
|
||||
csvData = null // Pour contexte métier
|
||||
} = config;
|
||||
|
||||
await tracer.annotate({
|
||||
technique: 'fingerprint_removal',
|
||||
intensity,
|
||||
elementsCount: Object.keys(content).length,
|
||||
contextualMode
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🔍 TECHNIQUE 2/3: Suppression empreintes LLM (intensité: ${intensity})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments à nettoyer`, 'DEBUG');
|
||||
|
||||
try {
|
||||
const results = {};
|
||||
let totalProcessed = 0;
|
||||
let totalReplacements = 0;
|
||||
let replacementDetails = [];
|
||||
|
||||
// Préparer contexte métier
|
||||
const businessContext = extractBusinessContext(csvData);
|
||||
|
||||
// Traiter chaque élément de contenu
|
||||
for (const [tag, text] of Object.entries(content)) {
|
||||
totalProcessed++;
|
||||
|
||||
if (text.length < 20) {
|
||||
results[tag] = text;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Appliquer suppression des empreintes
|
||||
const cleaningResult = cleanTextFingerprints(text, {
|
||||
intensity,
|
||||
preserveKeywords,
|
||||
contextualMode,
|
||||
businessContext,
|
||||
tag
|
||||
});
|
||||
|
||||
results[tag] = cleaningResult.text;
|
||||
|
||||
if (cleaningResult.replacements.length > 0) {
|
||||
totalReplacements += cleaningResult.replacements.length;
|
||||
replacementDetails.push({
|
||||
tag,
|
||||
replacements: cleaningResult.replacements,
|
||||
fingerprintsFound: cleaningResult.fingerprintsDetected
|
||||
});
|
||||
|
||||
logSh(` 🧹 [${tag}]: ${cleaningResult.replacements.length} remplacements`, 'DEBUG');
|
||||
} else {
|
||||
logSh(` ✅ [${tag}]: Aucune empreinte détectée`, 'DEBUG');
|
||||
}
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: totalProcessed,
|
||||
totalReplacements,
|
||||
avgReplacementsPerElement: Math.round(totalReplacements / totalProcessed * 100) / 100,
|
||||
elementsWithFingerprints: replacementDetails.length,
|
||||
duration,
|
||||
technique: 'fingerprint_removal'
|
||||
};
|
||||
|
||||
logSh(`✅ NETTOYAGE EMPREINTES: ${stats.totalReplacements} remplacements sur ${stats.elementsWithFingerprints}/${stats.processed} éléments en ${duration}ms`, 'INFO');
|
||||
|
||||
await tracer.event('Fingerprint removal terminée', stats);
|
||||
|
||||
return {
|
||||
content: results,
|
||||
stats,
|
||||
debug: {
|
||||
technique: 'fingerprint_removal',
|
||||
config: { intensity, preserveKeywords, contextualMode },
|
||||
replacements: replacementDetails,
|
||||
businessContext
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ NETTOYAGE EMPREINTES échoué après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
throw new Error(`LLMFingerprintRemoval failed: ${error.message}`);
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Nettoyer les empreintes LLM d'un texte
|
||||
*/
|
||||
function cleanTextFingerprints(text, config) {
|
||||
const { intensity, preserveKeywords, contextualMode, businessContext, tag } = config;
|
||||
|
||||
let cleanedText = text;
|
||||
const replacements = [];
|
||||
const fingerprintsDetected = [];
|
||||
|
||||
// PHASE 1: Remplacements directs du dictionnaire
|
||||
for (const [fingerprint, alternatives] of Object.entries(LLM_FINGERPRINTS)) {
|
||||
const regex = new RegExp(`\\b${escapeRegex(fingerprint)}\\b`, 'gi');
|
||||
const matches = text.match(regex);
|
||||
|
||||
if (matches) {
|
||||
fingerprintsDetected.push(fingerprint);
|
||||
|
||||
// Appliquer remplacement selon intensité
|
||||
if (Math.random() <= intensity) {
|
||||
const alternative = selectBestAlternative(alternatives, businessContext, contextualMode);
|
||||
|
||||
cleanedText = cleanedText.replace(regex, (match) => {
|
||||
// Préserver la casse originale
|
||||
return preserveCase(match, alternative);
|
||||
});
|
||||
|
||||
replacements.push({
|
||||
type: 'direct',
|
||||
original: fingerprint,
|
||||
replacement: alternative,
|
||||
occurrences: matches.length
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// PHASE 2: Remplacements contextuels
|
||||
if (contextualMode && businessContext) {
|
||||
const contextualReplacements = applyContextualReplacements(cleanedText, businessContext);
|
||||
cleanedText = contextualReplacements.text;
|
||||
replacements.push(...contextualReplacements.replacements);
|
||||
}
|
||||
|
||||
// PHASE 3: Détection patterns récurrents
|
||||
const patternReplacements = replaceRecurringPatterns(cleanedText, intensity);
|
||||
cleanedText = patternReplacements.text;
|
||||
replacements.push(...patternReplacements.replacements);
|
||||
|
||||
return {
|
||||
text: cleanedText,
|
||||
replacements,
|
||||
fingerprintsDetected
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Sélectionner la meilleure alternative selon le contexte
|
||||
*/
|
||||
function selectBestAlternative(alternatives, businessContext, contextualMode) {
|
||||
if (!contextualMode || !businessContext) {
|
||||
// Mode aléatoire simple
|
||||
return alternatives[Math.floor(Math.random() * alternatives.length)];
|
||||
}
|
||||
|
||||
// Mode contextuel : privilégier alternatives adaptées au métier
|
||||
const contextualAlternatives = alternatives.filter(alt =>
|
||||
isContextuallyAppropriate(alt, businessContext)
|
||||
);
|
||||
|
||||
const finalAlternatives = contextualAlternatives.length > 0 ? contextualAlternatives : alternatives;
|
||||
return finalAlternatives[Math.floor(Math.random() * finalAlternatives.length)];
|
||||
}
|
||||
|
||||
/**
|
||||
* Vérifier si une alternative est contextuelle appropriée
|
||||
*/
|
||||
function isContextuallyAppropriate(alternative, businessContext) {
|
||||
const { sector, vocabulary } = businessContext;
|
||||
|
||||
// Signalétique : privilégier vocabulaire technique/artisanal
|
||||
if (sector === 'signalétique') {
|
||||
const technicalWords = ['solide', 'fiable', 'costaud', 'résistant', 'adapté'];
|
||||
return technicalWords.includes(alternative);
|
||||
}
|
||||
|
||||
return true; // Par défaut accepter
|
||||
}
|
||||
|
||||
/**
|
||||
* Appliquer remplacements contextuels
|
||||
*/
|
||||
function applyContextualReplacements(text, businessContext) {
|
||||
let processedText = text;
|
||||
const replacements = [];
|
||||
|
||||
for (const [word, contexts] of Object.entries(CONTEXTUAL_REPLACEMENTS)) {
|
||||
const regex = new RegExp(`\\b${word}\\b`, 'gi');
|
||||
const matches = processedText.match(regex);
|
||||
|
||||
if (matches) {
|
||||
const contextAlternatives = contexts[businessContext.sector] || contexts.default;
|
||||
const replacement = contextAlternatives[Math.floor(Math.random() * contextAlternatives.length)];
|
||||
|
||||
processedText = processedText.replace(regex, (match) => {
|
||||
return preserveCase(match, replacement);
|
||||
});
|
||||
|
||||
replacements.push({
|
||||
type: 'contextual',
|
||||
original: word,
|
||||
replacement,
|
||||
occurrences: matches.length,
|
||||
context: businessContext.sector
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return { text: processedText, replacements };
|
||||
}
|
||||
|
||||
/**
|
||||
* Remplacer patterns récurrents
|
||||
*/
|
||||
function replaceRecurringPatterns(text, intensity) {
|
||||
let processedText = text;
|
||||
const replacements = [];
|
||||
|
||||
// Pattern 1: "très + adjectif" → variantes
|
||||
const veryPattern = /\btrès\s+(\w+)/gi;
|
||||
const veryMatches = [...text.matchAll(veryPattern)];
|
||||
|
||||
if (veryMatches.length > 2 && Math.random() < intensity) {
|
||||
// Remplacer certains "très" par des alternatives
|
||||
const alternatives = ['super', 'vraiment', 'particulièrement', 'assez'];
|
||||
|
||||
veryMatches.slice(1).forEach((match, index) => {
|
||||
if (Math.random() < 0.5) {
|
||||
const alternative = alternatives[Math.floor(Math.random() * alternatives.length)];
|
||||
const fullMatch = match[0];
|
||||
const adjective = match[1];
|
||||
const replacement = `${alternative} ${adjective}`;
|
||||
|
||||
processedText = processedText.replace(fullMatch, replacement);
|
||||
|
||||
replacements.push({
|
||||
type: 'pattern',
|
||||
pattern: '"très + adjectif"',
|
||||
original: fullMatch,
|
||||
replacement
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
return { text: processedText, replacements };
|
||||
}
|
||||
|
||||
/**
|
||||
* Extraire contexte métier des données CSV
|
||||
*/
|
||||
function extractBusinessContext(csvData) {
|
||||
if (!csvData) {
|
||||
return { sector: 'general', vocabulary: [] };
|
||||
}
|
||||
|
||||
const mc0 = csvData.mc0?.toLowerCase() || '';
|
||||
|
||||
// Détection secteur
|
||||
let sector = 'general';
|
||||
if (mc0.includes('plaque') || mc0.includes('panneau') || mc0.includes('enseigne')) {
|
||||
sector = 'signalétique';
|
||||
} else if (mc0.includes('impression') || mc0.includes('print')) {
|
||||
sector = 'impression';
|
||||
}
|
||||
|
||||
// Extraction vocabulaire clé
|
||||
const vocabulary = [csvData.mc0, csvData.t0, csvData.tMinus1].filter(Boolean);
|
||||
|
||||
return { sector, vocabulary };
|
||||
}
|
||||
|
||||
/**
|
||||
* Préserver la casse originale
|
||||
*/
|
||||
function preserveCase(original, replacement) {
|
||||
if (original === original.toUpperCase()) {
|
||||
return replacement.toUpperCase();
|
||||
} else if (original[0] === original[0].toUpperCase()) {
|
||||
return replacement.charAt(0).toUpperCase() + replacement.slice(1).toLowerCase();
|
||||
} else {
|
||||
return replacement.toLowerCase();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Échapper caractères regex
|
||||
*/
|
||||
function escapeRegex(text) {
|
||||
return text.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser les empreintes LLM dans un texte
|
||||
*/
|
||||
function analyzeLLMFingerprints(text) {
|
||||
const detectedFingerprints = [];
|
||||
let totalMatches = 0;
|
||||
|
||||
for (const fingerprint of Object.keys(LLM_FINGERPRINTS)) {
|
||||
const regex = new RegExp(`\\b${escapeRegex(fingerprint)}\\b`, 'gi');
|
||||
const matches = text.match(regex);
|
||||
|
||||
if (matches) {
|
||||
detectedFingerprints.push({
|
||||
fingerprint,
|
||||
occurrences: matches.length,
|
||||
category: categorizefingerprint(fingerprint)
|
||||
});
|
||||
totalMatches += matches.length;
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
hasFingerprints: detectedFingerprints.length > 0,
|
||||
fingerprints: detectedFingerprints,
|
||||
totalMatches,
|
||||
riskLevel: calculateRiskLevel(detectedFingerprints, text.length)
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Catégoriser une empreinte LLM
|
||||
*/
|
||||
function categorizefingerprint(fingerprint) {
|
||||
const categories = {
|
||||
'technical': ['optimal', 'comprehensive', 'robust', 'seamless'],
|
||||
'formal': ['il convient de', 'néanmoins', 'par conséquent'],
|
||||
'superlative': ['extrêmement', 'particulièrement', 'remarquablement'],
|
||||
'commercial': ['solution innovante', 'game-changer', 'révolutionnaire']
|
||||
};
|
||||
|
||||
for (const [category, words] of Object.entries(categories)) {
|
||||
if (words.some(word => fingerprint.includes(word))) {
|
||||
return category;
|
||||
}
|
||||
}
|
||||
|
||||
return 'other';
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculer niveau de risque de détection
|
||||
*/
|
||||
function calculateRiskLevel(fingerprints, textLength) {
|
||||
if (fingerprints.length === 0) return 'low';
|
||||
|
||||
const fingerprintDensity = fingerprints.reduce((sum, fp) => sum + fp.occurrences, 0) / (textLength / 100);
|
||||
|
||||
if (fingerprintDensity > 3) return 'high';
|
||||
if (fingerprintDensity > 1.5) return 'medium';
|
||||
return 'low';
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
removeLLMFingerprints, // ← MAIN ENTRY POINT
|
||||
cleanTextFingerprints,
|
||||
analyzeLLMFingerprints,
|
||||
LLM_FINGERPRINTS,
|
||||
CONTEXTUAL_REPLACEMENTS,
|
||||
extractBusinessContext
|
||||
};
|
||||
485
lib/post-processing/PatternBreaking.js
Normal file
485
lib/post-processing/PatternBreaking.js
Normal file
@ -0,0 +1,485 @@
|
||||
// ========================================
|
||||
// ORCHESTRATEUR PATTERN BREAKING - NIVEAU 2
|
||||
// Responsabilité: Coordonner les 3 techniques anti-détection
|
||||
// Objectif: -20% détection IA vs Niveau 1
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
// Import des 3 techniques Pattern Breaking
|
||||
const { applySentenceVariation } = require('./SentenceVariation');
|
||||
const { removeLLMFingerprints } = require('./LLMFingerprintRemoval');
|
||||
const { humanizeTransitions } = require('./TransitionHumanization');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - PATTERN BREAKING COMPLET
|
||||
* @param {Object} input - { content: {}, csvData: {}, options: {} }
|
||||
* @returns {Object} - { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function applyPatternBreaking(input) {
|
||||
return await tracer.run('PatternBreaking.applyPatternBreaking()', async () => {
|
||||
const { content, csvData, options = {} } = input;
|
||||
|
||||
const config = {
|
||||
// Configuration globale
|
||||
intensity = 0.6, // Intensité générale (60%)
|
||||
|
||||
// Contrôle par technique
|
||||
sentenceVariation: true, // Activer variation phrases
|
||||
fingerprintRemoval: true, // Activer suppression empreintes
|
||||
transitionHumanization: true, // Activer humanisation transitions
|
||||
|
||||
// Configuration spécifique par technique
|
||||
sentenceVariationConfig: {
|
||||
intensity: 0.3,
|
||||
splitThreshold: 100,
|
||||
mergeThreshold: 30,
|
||||
preserveQuestions: true,
|
||||
preserveTitles: true
|
||||
},
|
||||
|
||||
fingerprintRemovalConfig: {
|
||||
intensity: 1.0,
|
||||
preserveKeywords: true,
|
||||
contextualMode: true,
|
||||
csvData
|
||||
},
|
||||
|
||||
transitionHumanizationConfig: {
|
||||
intensity: 0.6,
|
||||
personalityStyle: csvData?.personality?.style,
|
||||
avoidRepetition: true,
|
||||
preserveFormal: false,
|
||||
csvData
|
||||
},
|
||||
|
||||
// Options avancées
|
||||
qualityPreservation: true, // Préserver qualité contenu
|
||||
seoIntegrity: true, // Maintenir intégrité SEO
|
||||
readabilityCheck: true, // Vérifier lisibilité
|
||||
|
||||
...options // Override avec options fournies
|
||||
};
|
||||
|
||||
await tracer.annotate({
|
||||
level: 2,
|
||||
technique: 'pattern_breaking',
|
||||
elementsCount: Object.keys(content).length,
|
||||
personality: csvData?.personality?.nom,
|
||||
config: {
|
||||
sentenceVariation: config.sentenceVariation,
|
||||
fingerprintRemoval: config.fingerprintRemoval,
|
||||
transitionHumanization: config.transitionHumanization,
|
||||
intensity: config.intensity
|
||||
}
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🎯 NIVEAU 2: PATTERN BREAKING (3 techniques)`, 'INFO');
|
||||
logSh(` 🎭 Personnalité: ${csvData?.personality?.nom} (${csvData?.personality?.style})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments à traiter`, 'INFO');
|
||||
logSh(` ⚙️ Techniques actives: ${[config.sentenceVariation && 'Variation', config.fingerprintRemoval && 'Empreintes', config.transitionHumanization && 'Transitions'].filter(Boolean).join(' + ')}`, 'INFO');
|
||||
|
||||
try {
|
||||
let currentContent = { ...content };
|
||||
const pipelineStats = {
|
||||
techniques: [],
|
||||
totalDuration: 0,
|
||||
qualityMetrics: {}
|
||||
};
|
||||
|
||||
// Analyse initiale de qualité
|
||||
if (config.qualityPreservation) {
|
||||
pipelineStats.qualityMetrics.initial = analyzeContentQuality(currentContent);
|
||||
}
|
||||
|
||||
// TECHNIQUE 1: VARIATION LONGUEUR PHRASES
|
||||
if (config.sentenceVariation) {
|
||||
const step1Result = await applySentenceVariation({
|
||||
content: currentContent,
|
||||
config: config.sentenceVariationConfig,
|
||||
context: { step: 1, totalSteps: 3 }
|
||||
});
|
||||
|
||||
currentContent = step1Result.content;
|
||||
pipelineStats.techniques.push({
|
||||
name: 'SentenceVariation',
|
||||
...step1Result.stats,
|
||||
qualityImpact: calculateQualityImpact(content, step1Result.content)
|
||||
});
|
||||
|
||||
logSh(` ✅ 1/3: Variation phrases - ${step1Result.stats.modified}/${step1Result.stats.processed} éléments`, 'INFO');
|
||||
}
|
||||
|
||||
// TECHNIQUE 2: SUPPRESSION EMPREINTES LLM
|
||||
if (config.fingerprintRemoval) {
|
||||
const step2Result = await removeLLMFingerprints({
|
||||
content: currentContent,
|
||||
config: config.fingerprintRemovalConfig,
|
||||
context: { step: 2, totalSteps: 3 }
|
||||
});
|
||||
|
||||
currentContent = step2Result.content;
|
||||
pipelineStats.techniques.push({
|
||||
name: 'FingerprintRemoval',
|
||||
...step2Result.stats,
|
||||
qualityImpact: calculateQualityImpact(content, step2Result.content)
|
||||
});
|
||||
|
||||
logSh(` ✅ 2/3: Suppression empreintes - ${step2Result.stats.totalReplacements} remplacements`, 'INFO');
|
||||
}
|
||||
|
||||
// TECHNIQUE 3: HUMANISATION TRANSITIONS
|
||||
if (config.transitionHumanization) {
|
||||
const step3Result = await humanizeTransitions({
|
||||
content: currentContent,
|
||||
config: config.transitionHumanizationConfig,
|
||||
context: { step: 3, totalSteps: 3 }
|
||||
});
|
||||
|
||||
currentContent = step3Result.content;
|
||||
pipelineStats.techniques.push({
|
||||
name: 'TransitionHumanization',
|
||||
...step3Result.stats,
|
||||
qualityImpact: calculateQualityImpact(content, step3Result.content)
|
||||
});
|
||||
|
||||
logSh(` ✅ 3/3: Humanisation transitions - ${step3Result.stats.totalReplacements} améliorations`, 'INFO');
|
||||
}
|
||||
|
||||
// POST-PROCESSING: Vérifications qualité
|
||||
if (config.qualityPreservation || config.readabilityCheck) {
|
||||
const qualityCheck = performQualityChecks(content, currentContent, config);
|
||||
pipelineStats.qualityMetrics.final = qualityCheck;
|
||||
|
||||
// Rollback si qualité trop dégradée
|
||||
if (qualityCheck.shouldRollback) {
|
||||
logSh(`⚠️ ROLLBACK: Qualité dégradée, retour contenu original`, 'WARNING');
|
||||
currentContent = content;
|
||||
pipelineStats.rollback = true;
|
||||
}
|
||||
}
|
||||
|
||||
// RÉSULTATS FINAUX
|
||||
const totalDuration = Date.now() - startTime;
|
||||
pipelineStats.totalDuration = totalDuration;
|
||||
|
||||
const totalModifications = pipelineStats.techniques.reduce((sum, tech) => {
|
||||
return sum + (tech.modified || tech.totalReplacements || 0);
|
||||
}, 0);
|
||||
|
||||
const stats = {
|
||||
level: 2,
|
||||
technique: 'pattern_breaking',
|
||||
processed: Object.keys(content).length,
|
||||
totalModifications,
|
||||
techniquesUsed: pipelineStats.techniques.length,
|
||||
duration: totalDuration,
|
||||
techniques: pipelineStats.techniques,
|
||||
qualityPreserved: !pipelineStats.rollback,
|
||||
rollback: pipelineStats.rollback || false
|
||||
};
|
||||
|
||||
logSh(`🎯 NIVEAU 2 TERMINÉ: ${totalModifications} modifications sur ${stats.processed} éléments (${totalDuration}ms)`, 'INFO');
|
||||
|
||||
// Log détaillé par technique
|
||||
pipelineStats.techniques.forEach(tech => {
|
||||
const modificationsCount = tech.modified || tech.totalReplacements || 0;
|
||||
logSh(` • ${tech.name}: ${modificationsCount} modifications (${tech.duration}ms)`, 'DEBUG');
|
||||
});
|
||||
|
||||
await tracer.event('Pattern breaking terminé', stats);
|
||||
|
||||
return {
|
||||
content: currentContent,
|
||||
stats,
|
||||
debug: {
|
||||
level: 2,
|
||||
technique: 'pattern_breaking',
|
||||
config,
|
||||
pipeline: pipelineStats,
|
||||
qualityMetrics: pipelineStats.qualityMetrics
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const totalDuration = Date.now() - startTime;
|
||||
logSh(`❌ NIVEAU 2 ÉCHOUÉ après ${totalDuration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: retourner contenu original
|
||||
logSh(`🔄 Fallback: contenu original conservé`, 'WARNING');
|
||||
|
||||
await tracer.event('Pattern breaking échoué', {
|
||||
error: error.message,
|
||||
duration: totalDuration,
|
||||
fallback: true
|
||||
});
|
||||
|
||||
return {
|
||||
content,
|
||||
stats: {
|
||||
level: 2,
|
||||
technique: 'pattern_breaking',
|
||||
processed: Object.keys(content).length,
|
||||
totalModifications: 0,
|
||||
duration: totalDuration,
|
||||
error: error.message,
|
||||
fallback: true
|
||||
},
|
||||
debug: { error: error.message, fallback: true }
|
||||
};
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* MODE DIAGNOSTIC - Test individuel des techniques
|
||||
*/
|
||||
async function diagnosticPatternBreaking(content, csvData) {
|
||||
logSh(`🔬 DIAGNOSTIC NIVEAU 2: Test individuel des techniques`, 'INFO');
|
||||
|
||||
const diagnostics = {
|
||||
techniques: [],
|
||||
errors: [],
|
||||
performance: {},
|
||||
recommendations: []
|
||||
};
|
||||
|
||||
const techniques = [
|
||||
{ name: 'SentenceVariation', func: applySentenceVariation },
|
||||
{ name: 'FingerprintRemoval', func: removeLLMFingerprints },
|
||||
{ name: 'TransitionHumanization', func: humanizeTransitions }
|
||||
];
|
||||
|
||||
for (const technique of techniques) {
|
||||
try {
|
||||
const startTime = Date.now();
|
||||
const result = await technique.func({
|
||||
content,
|
||||
config: { csvData },
|
||||
context: { diagnostic: true }
|
||||
});
|
||||
|
||||
diagnostics.techniques.push({
|
||||
name: technique.name,
|
||||
success: true,
|
||||
duration: Date.now() - startTime,
|
||||
stats: result.stats,
|
||||
effectivenessScore: calculateEffectivenessScore(result.stats)
|
||||
});
|
||||
|
||||
} catch (error) {
|
||||
diagnostics.errors.push({
|
||||
technique: technique.name,
|
||||
error: error.message
|
||||
});
|
||||
diagnostics.techniques.push({
|
||||
name: technique.name,
|
||||
success: false,
|
||||
error: error.message
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Générer recommandations
|
||||
diagnostics.recommendations = generateRecommendations(diagnostics.techniques);
|
||||
|
||||
const successfulTechniques = diagnostics.techniques.filter(t => t.success);
|
||||
diagnostics.performance.totalDuration = diagnostics.techniques.reduce((sum, t) => sum + (t.duration || 0), 0);
|
||||
diagnostics.performance.successRate = Math.round((successfulTechniques.length / techniques.length) * 100);
|
||||
|
||||
logSh(`🔬 DIAGNOSTIC TERMINÉ: ${successfulTechniques.length}/${techniques.length} techniques opérationnelles`, 'INFO');
|
||||
|
||||
return diagnostics;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser qualité du contenu
|
||||
*/
|
||||
function analyzeContentQuality(content) {
|
||||
const allText = Object.values(content).join(' ');
|
||||
const wordCount = allText.split(/\s+/).length;
|
||||
const avgWordsPerElement = wordCount / Object.keys(content).length;
|
||||
|
||||
// Métrique de lisibilité approximative (Flesch simplifié)
|
||||
const sentences = allText.split(/[.!?]+/).filter(s => s.trim().length > 5);
|
||||
const avgWordsPerSentence = wordCount / Math.max(1, sentences.length);
|
||||
const readabilityScore = Math.max(0, 100 - (avgWordsPerSentence * 1.5));
|
||||
|
||||
return {
|
||||
wordCount,
|
||||
elementCount: Object.keys(content).length,
|
||||
avgWordsPerElement: Math.round(avgWordsPerElement),
|
||||
avgWordsPerSentence: Math.round(avgWordsPerSentence),
|
||||
readabilityScore: Math.round(readabilityScore),
|
||||
sentenceCount: sentences.length
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculer impact qualité entre avant/après
|
||||
*/
|
||||
function calculateQualityImpact(originalContent, modifiedContent) {
|
||||
const originalQuality = analyzeContentQuality(originalContent);
|
||||
const modifiedQuality = analyzeContentQuality(modifiedContent);
|
||||
|
||||
const wordCountChange = ((modifiedQuality.wordCount - originalQuality.wordCount) / originalQuality.wordCount) * 100;
|
||||
const readabilityChange = modifiedQuality.readabilityScore - originalQuality.readabilityScore;
|
||||
|
||||
return {
|
||||
wordCountChange: Math.round(wordCountChange * 100) / 100,
|
||||
readabilityChange: Math.round(readabilityChange),
|
||||
severe: Math.abs(wordCountChange) > 10 || Math.abs(readabilityChange) > 15
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Effectuer vérifications qualité
|
||||
*/
|
||||
function performQualityChecks(originalContent, modifiedContent, config) {
|
||||
const originalQuality = analyzeContentQuality(originalContent);
|
||||
const modifiedQuality = analyzeContentQuality(modifiedContent);
|
||||
|
||||
const qualityThresholds = {
|
||||
maxWordCountChange: 15, // % max changement nombre mots
|
||||
minReadabilityScore: 50, // Score lisibilité minimum
|
||||
maxReadabilityDrop: 20 // Baisse max lisibilité
|
||||
};
|
||||
|
||||
const issues = [];
|
||||
|
||||
// Vérification nombre de mots
|
||||
const wordCountChange = Math.abs(modifiedQuality.wordCount - originalQuality.wordCount) / originalQuality.wordCount * 100;
|
||||
if (wordCountChange > qualityThresholds.maxWordCountChange) {
|
||||
issues.push({
|
||||
type: 'word_count_change',
|
||||
severity: 'high',
|
||||
change: wordCountChange,
|
||||
threshold: qualityThresholds.maxWordCountChange
|
||||
});
|
||||
}
|
||||
|
||||
// Vérification lisibilité
|
||||
if (modifiedQuality.readabilityScore < qualityThresholds.minReadabilityScore) {
|
||||
issues.push({
|
||||
type: 'low_readability',
|
||||
severity: 'medium',
|
||||
score: modifiedQuality.readabilityScore,
|
||||
threshold: qualityThresholds.minReadabilityScore
|
||||
});
|
||||
}
|
||||
|
||||
const readabilityDrop = originalQuality.readabilityScore - modifiedQuality.readabilityScore;
|
||||
if (readabilityDrop > qualityThresholds.maxReadabilityDrop) {
|
||||
issues.push({
|
||||
type: 'readability_drop',
|
||||
severity: 'high',
|
||||
drop: readabilityDrop,
|
||||
threshold: qualityThresholds.maxReadabilityDrop
|
||||
});
|
||||
}
|
||||
|
||||
// Décision rollback
|
||||
const highSeverityIssues = issues.filter(issue => issue.severity === 'high');
|
||||
const shouldRollback = highSeverityIssues.length > 0 && config.qualityPreservation;
|
||||
|
||||
return {
|
||||
originalQuality,
|
||||
modifiedQuality,
|
||||
issues,
|
||||
shouldRollback,
|
||||
qualityScore: calculateOverallQualityScore(issues, modifiedQuality)
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculer score de qualité global
|
||||
*/
|
||||
function calculateOverallQualityScore(issues, quality) {
|
||||
let baseScore = 100;
|
||||
|
||||
issues.forEach(issue => {
|
||||
const penalty = issue.severity === 'high' ? 30 : issue.severity === 'medium' ? 15 : 5;
|
||||
baseScore -= penalty;
|
||||
});
|
||||
|
||||
// Bonus pour bonne lisibilité
|
||||
if (quality.readabilityScore > 70) baseScore += 10;
|
||||
|
||||
return Math.max(0, Math.min(100, baseScore));
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculer score d'efficacité d'une technique
|
||||
*/
|
||||
function calculateEffectivenessScore(stats) {
|
||||
if (!stats) return 0;
|
||||
|
||||
const modificationsCount = stats.modified || stats.totalReplacements || 0;
|
||||
const processedCount = stats.processed || 1;
|
||||
const modificationRate = (modificationsCount / processedCount) * 100;
|
||||
|
||||
// Score basé sur taux de modification et durée
|
||||
const baseScore = Math.min(100, modificationRate * 2); // Max 50% modification = score 100
|
||||
const durationPenalty = Math.max(0, (stats.duration - 1000) / 100); // Pénalité si > 1s
|
||||
|
||||
return Math.max(0, Math.round(baseScore - durationPenalty));
|
||||
}
|
||||
|
||||
/**
|
||||
* Générer recommandations basées sur diagnostic
|
||||
*/
|
||||
function generateRecommendations(techniqueResults) {
|
||||
const recommendations = [];
|
||||
|
||||
techniqueResults.forEach(tech => {
|
||||
if (!tech.success) {
|
||||
recommendations.push({
|
||||
type: 'error',
|
||||
technique: tech.name,
|
||||
message: `${tech.name} a échoué: ${tech.error}`,
|
||||
action: 'Vérifier configuration et dépendances'
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const effectiveness = tech.effectivenessScore || 0;
|
||||
|
||||
if (effectiveness < 30) {
|
||||
recommendations.push({
|
||||
type: 'low_effectiveness',
|
||||
technique: tech.name,
|
||||
message: `${tech.name} peu efficace (score: ${effectiveness})`,
|
||||
action: 'Augmenter intensité ou réviser configuration'
|
||||
});
|
||||
} else if (effectiveness > 80) {
|
||||
recommendations.push({
|
||||
type: 'high_effectiveness',
|
||||
technique: tech.name,
|
||||
message: `${tech.name} très efficace (score: ${effectiveness})`,
|
||||
action: 'Configuration optimale'
|
||||
});
|
||||
}
|
||||
|
||||
if (tech.duration > 3000) {
|
||||
recommendations.push({
|
||||
type: 'performance',
|
||||
technique: tech.name,
|
||||
message: `${tech.name} lent (${tech.duration}ms)`,
|
||||
action: 'Considérer réduction intensité ou optimisation'
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
return recommendations;
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
applyPatternBreaking, // ← MAIN ENTRY POINT
|
||||
diagnosticPatternBreaking, // ← Mode diagnostic
|
||||
analyzeContentQuality,
|
||||
performQualityChecks,
|
||||
calculateQualityImpact,
|
||||
calculateEffectivenessScore
|
||||
};
|
||||
336
lib/post-processing/SentenceVariation.js
Normal file
336
lib/post-processing/SentenceVariation.js
Normal file
@ -0,0 +1,336 @@
|
||||
// ========================================
|
||||
// PATTERN BREAKING - TECHNIQUE 1: SENTENCE VARIATION
|
||||
// Responsabilité: Varier les longueurs de phrases pour casser l'uniformité
|
||||
// Anti-détection: Éviter patterns syntaxiques réguliers des LLMs
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - VARIATION LONGUEUR PHRASES
|
||||
* @param {Object} input - { content: {}, config: {}, context: {} }
|
||||
* @returns {Object} - { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function applySentenceVariation(input) {
|
||||
return await tracer.run('SentenceVariation.applySentenceVariation()', async () => {
|
||||
const { content, config = {}, context = {} } = input;
|
||||
|
||||
const {
|
||||
intensity = 0.3, // Probabilité de modification (30%)
|
||||
splitThreshold = 100, // Chars pour split
|
||||
mergeThreshold = 30, // Chars pour merge
|
||||
preserveQuestions = true, // Préserver questions FAQ
|
||||
preserveTitles = true // Préserver titres
|
||||
} = config;
|
||||
|
||||
await tracer.annotate({
|
||||
technique: 'sentence_variation',
|
||||
intensity,
|
||||
elementsCount: Object.keys(content).length
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`📐 TECHNIQUE 1/3: Variation longueur phrases (intensité: ${intensity})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments à analyser`, 'DEBUG');
|
||||
|
||||
try {
|
||||
const results = {};
|
||||
let totalProcessed = 0;
|
||||
let totalModified = 0;
|
||||
let modificationsDetails = [];
|
||||
|
||||
// Traiter chaque élément de contenu
|
||||
for (const [tag, text] of Object.entries(content)) {
|
||||
totalProcessed++;
|
||||
|
||||
// Skip certains éléments selon config
|
||||
if (shouldSkipElement(tag, text, { preserveQuestions, preserveTitles })) {
|
||||
results[tag] = text;
|
||||
logSh(` ⏭️ [${tag}]: Préservé (${getSkipReason(tag, text)})`, 'DEBUG');
|
||||
continue;
|
||||
}
|
||||
|
||||
// Appliquer variation si éligible
|
||||
const variationResult = varyTextStructure(text, {
|
||||
intensity,
|
||||
splitThreshold,
|
||||
mergeThreshold,
|
||||
tag
|
||||
});
|
||||
|
||||
results[tag] = variationResult.text;
|
||||
|
||||
if (variationResult.modified) {
|
||||
totalModified++;
|
||||
modificationsDetails.push({
|
||||
tag,
|
||||
modifications: variationResult.modifications,
|
||||
originalLength: text.length,
|
||||
newLength: variationResult.text.length
|
||||
});
|
||||
|
||||
logSh(` ✏️ [${tag}]: ${variationResult.modifications.length} modifications`, 'DEBUG');
|
||||
} else {
|
||||
logSh(` ➡️ [${tag}]: Aucune modification`, 'DEBUG');
|
||||
}
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: totalProcessed,
|
||||
modified: totalModified,
|
||||
modificationRate: Math.round((totalModified / totalProcessed) * 100),
|
||||
duration,
|
||||
technique: 'sentence_variation'
|
||||
};
|
||||
|
||||
logSh(`✅ VARIATION PHRASES: ${stats.modified}/${stats.processed} éléments modifiés (${stats.modificationRate}%) en ${duration}ms`, 'INFO');
|
||||
|
||||
await tracer.event('Sentence variation terminée', stats);
|
||||
|
||||
return {
|
||||
content: results,
|
||||
stats,
|
||||
debug: {
|
||||
technique: 'sentence_variation',
|
||||
config: { intensity, splitThreshold, mergeThreshold },
|
||||
modifications: modificationsDetails
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ VARIATION PHRASES échouée après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
throw new Error(`SentenceVariation failed: ${error.message}`);
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Appliquer variation structure à un texte
|
||||
*/
|
||||
function varyTextStructure(text, config) {
|
||||
const { intensity, splitThreshold, mergeThreshold, tag } = config;
|
||||
|
||||
if (text.length < 50) {
|
||||
return { text, modified: false, modifications: [] };
|
||||
}
|
||||
|
||||
// Séparer en phrases
|
||||
const sentences = splitIntoSentences(text);
|
||||
|
||||
if (sentences.length < 2) {
|
||||
return { text, modified: false, modifications: [] };
|
||||
}
|
||||
|
||||
let modifiedSentences = [...sentences];
|
||||
const modifications = [];
|
||||
|
||||
// TECHNIQUE 1: SPLIT des phrases longues
|
||||
for (let i = 0; i < modifiedSentences.length; i++) {
|
||||
const sentence = modifiedSentences[i];
|
||||
|
||||
if (sentence.length > splitThreshold && Math.random() < intensity) {
|
||||
const splitResult = splitLongSentence(sentence);
|
||||
if (splitResult.success) {
|
||||
modifiedSentences.splice(i, 1, splitResult.part1, splitResult.part2);
|
||||
modifications.push({
|
||||
type: 'split',
|
||||
original: sentence.substring(0, 50) + '...',
|
||||
result: `${splitResult.part1.substring(0, 25)}... | ${splitResult.part2.substring(0, 25)}...`
|
||||
});
|
||||
i++; // Skip la phrase suivante (qui est notre part2)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TECHNIQUE 2: MERGE des phrases courtes
|
||||
for (let i = 0; i < modifiedSentences.length - 1; i++) {
|
||||
const current = modifiedSentences[i];
|
||||
const next = modifiedSentences[i + 1];
|
||||
|
||||
if (current.length < mergeThreshold && next.length < mergeThreshold && Math.random() < intensity) {
|
||||
const merged = mergeSentences(current, next);
|
||||
if (merged.success) {
|
||||
modifiedSentences.splice(i, 2, merged.result);
|
||||
modifications.push({
|
||||
type: 'merge',
|
||||
original: `${current.substring(0, 20)}... + ${next.substring(0, 20)}...`,
|
||||
result: merged.result.substring(0, 50) + '...'
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const finalText = modifiedSentences.join(' ').trim();
|
||||
|
||||
return {
|
||||
text: finalText,
|
||||
modified: modifications.length > 0,
|
||||
modifications
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Diviser texte en phrases
|
||||
*/
|
||||
function splitIntoSentences(text) {
|
||||
// Regex plus sophistiquée pour gérer les abréviations
|
||||
const sentences = text.split(/(?<![A-Z][a-z]\.)\s*[.!?]+\s+/)
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 5);
|
||||
|
||||
return sentences;
|
||||
}
|
||||
|
||||
/**
|
||||
* Diviser une phrase longue en deux
|
||||
*/
|
||||
function splitLongSentence(sentence) {
|
||||
// Points de rupture naturels
|
||||
const breakPoints = [
|
||||
', et ',
|
||||
', mais ',
|
||||
', car ',
|
||||
', donc ',
|
||||
', ainsi ',
|
||||
', alors ',
|
||||
', tandis que ',
|
||||
', bien que '
|
||||
];
|
||||
|
||||
// Chercher le meilleur point de rupture proche du milieu
|
||||
const idealBreak = sentence.length / 2;
|
||||
let bestBreak = null;
|
||||
let bestDistance = Infinity;
|
||||
|
||||
for (const breakPoint of breakPoints) {
|
||||
const index = sentence.indexOf(breakPoint, idealBreak - 50);
|
||||
if (index > 0 && index < sentence.length - 20) {
|
||||
const distance = Math.abs(index - idealBreak);
|
||||
if (distance < bestDistance) {
|
||||
bestDistance = distance;
|
||||
bestBreak = { index, breakPoint };
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (bestBreak) {
|
||||
const part1 = sentence.substring(0, bestBreak.index + 1).trim();
|
||||
const part2 = sentence.substring(bestBreak.index + bestBreak.breakPoint.length).trim();
|
||||
|
||||
// Assurer que part2 commence par une majuscule
|
||||
const capitalizedPart2 = part2.charAt(0).toUpperCase() + part2.slice(1);
|
||||
|
||||
return {
|
||||
success: true,
|
||||
part1,
|
||||
part2: capitalizedPart2
|
||||
};
|
||||
}
|
||||
|
||||
return { success: false };
|
||||
}
|
||||
|
||||
/**
|
||||
* Fusionner deux phrases courtes
|
||||
*/
|
||||
function mergeSentences(sentence1, sentence2) {
|
||||
// Connecteurs pour fusion naturelle
|
||||
const connectors = [
|
||||
'et',
|
||||
'puis',
|
||||
'aussi',
|
||||
'également',
|
||||
'de plus'
|
||||
];
|
||||
|
||||
// Choisir connecteur aléatoire
|
||||
const connector = connectors[Math.floor(Math.random() * connectors.length)];
|
||||
|
||||
// Nettoyer les phrases
|
||||
let cleaned1 = sentence1.replace(/[.!?]+$/, '').trim();
|
||||
let cleaned2 = sentence2.trim();
|
||||
|
||||
// Mettre sentence2 en minuscule sauf si nom propre
|
||||
if (!/^[A-Z][a-z]*\s+[A-Z]/.test(cleaned2)) {
|
||||
cleaned2 = cleaned2.charAt(0).toLowerCase() + cleaned2.slice(1);
|
||||
}
|
||||
|
||||
const merged = `${cleaned1}, ${connector} ${cleaned2}`;
|
||||
|
||||
return {
|
||||
success: merged.length < 200, // Éviter phrases trop longues
|
||||
result: merged
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Déterminer si un élément doit être skippé
|
||||
*/
|
||||
function shouldSkipElement(tag, text, config) {
|
||||
// Skip titres si demandé
|
||||
if (config.preserveTitles && (tag.includes('Titre') || tag.includes('H1') || tag.includes('H2'))) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Skip questions FAQ si demandé
|
||||
if (config.preserveQuestions && (tag.includes('Faq_q') || text.includes('?'))) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Skip textes très courts
|
||||
if (text.length < 50) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir raison du skip pour debug
|
||||
*/
|
||||
function getSkipReason(tag, text) {
|
||||
if (tag.includes('Titre') || tag.includes('H1') || tag.includes('H2')) return 'titre';
|
||||
if (tag.includes('Faq_q') || text.includes('?')) return 'question';
|
||||
if (text.length < 50) return 'trop court';
|
||||
return 'autre';
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser les patterns de phrases d'un texte
|
||||
*/
|
||||
function analyzeSentencePatterns(text) {
|
||||
const sentences = splitIntoSentences(text);
|
||||
|
||||
if (sentences.length < 2) {
|
||||
return { needsVariation: false, patterns: [] };
|
||||
}
|
||||
|
||||
const lengths = sentences.map(s => s.length);
|
||||
const avgLength = lengths.reduce((a, b) => a + b, 0) / lengths.length;
|
||||
|
||||
// Calculer uniformité (variance faible = uniformité élevée)
|
||||
const variance = lengths.reduce((acc, len) => acc + Math.pow(len - avgLength, 2), 0) / lengths.length;
|
||||
const uniformity = 1 / (1 + Math.sqrt(variance) / avgLength); // 0-1, 1 = très uniforme
|
||||
|
||||
return {
|
||||
needsVariation: uniformity > 0.7, // Seuil d'uniformité problématique
|
||||
patterns: {
|
||||
avgLength: Math.round(avgLength),
|
||||
uniformity: Math.round(uniformity * 100),
|
||||
sentenceCount: sentences.length,
|
||||
variance: Math.round(variance)
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
applySentenceVariation, // ← MAIN ENTRY POINT
|
||||
varyTextStructure,
|
||||
splitIntoSentences,
|
||||
splitLongSentence,
|
||||
mergeSentences,
|
||||
analyzeSentencePatterns
|
||||
};
|
||||
526
lib/post-processing/TransitionHumanization.js
Normal file
526
lib/post-processing/TransitionHumanization.js
Normal file
@ -0,0 +1,526 @@
|
||||
// ========================================
|
||||
// PATTERN BREAKING - TECHNIQUE 3: TRANSITION HUMANIZATION
|
||||
// Responsabilité: Remplacer connecteurs mécaniques par transitions naturelles
|
||||
// Anti-détection: Éviter patterns de liaison typiques des LLMs
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* DICTIONNAIRE CONNECTEURS HUMANISÉS
|
||||
* Connecteurs LLM → Alternatives naturelles par contexte
|
||||
*/
|
||||
const TRANSITION_REPLACEMENTS = {
|
||||
// Connecteurs trop formels → versions naturelles
|
||||
'par ailleurs': {
|
||||
alternatives: ['d\'ailleurs', 'au fait', 'soit dit en passant', 'à propos', 'sinon'],
|
||||
weight: 0.8,
|
||||
contexts: ['casual', 'conversational']
|
||||
},
|
||||
|
||||
'en effet': {
|
||||
alternatives: ['effectivement', 'c\'est vrai', 'tout à fait', 'absolument', 'exactement'],
|
||||
weight: 0.9,
|
||||
contexts: ['confirmative', 'agreement']
|
||||
},
|
||||
|
||||
'de plus': {
|
||||
alternatives: ['aussi', 'également', 'qui plus est', 'en plus', 'et puis'],
|
||||
weight: 0.7,
|
||||
contexts: ['additive', 'continuation']
|
||||
},
|
||||
|
||||
'cependant': {
|
||||
alternatives: ['mais', 'pourtant', 'néanmoins', 'malgré tout', 'quand même'],
|
||||
weight: 0.6,
|
||||
contexts: ['contrast', 'opposition']
|
||||
},
|
||||
|
||||
'ainsi': {
|
||||
alternatives: ['donc', 'du coup', 'comme ça', 'par conséquent', 'résultat'],
|
||||
weight: 0.8,
|
||||
contexts: ['consequence', 'result']
|
||||
},
|
||||
|
||||
'donc': {
|
||||
alternatives: ['du coup', 'alors', 'par conséquent', 'ainsi', 'résultat'],
|
||||
weight: 0.5,
|
||||
contexts: ['consequence', 'logical']
|
||||
},
|
||||
|
||||
// Connecteurs de séquence
|
||||
'ensuite': {
|
||||
alternatives: ['puis', 'après', 'et puis', 'alors', 'du coup'],
|
||||
weight: 0.6,
|
||||
contexts: ['sequence', 'temporal']
|
||||
},
|
||||
|
||||
'puis': {
|
||||
alternatives: ['ensuite', 'après', 'et puis', 'alors'],
|
||||
weight: 0.4,
|
||||
contexts: ['sequence', 'temporal']
|
||||
},
|
||||
|
||||
// Connecteurs d'emphase
|
||||
'également': {
|
||||
alternatives: ['aussi', 'de même', 'pareillement', 'en plus'],
|
||||
weight: 0.6,
|
||||
contexts: ['similarity', 'addition']
|
||||
},
|
||||
|
||||
'aussi': {
|
||||
alternatives: ['également', 'de même', 'en plus', 'pareillement'],
|
||||
weight: 0.3,
|
||||
contexts: ['similarity', 'addition']
|
||||
},
|
||||
|
||||
// Connecteurs de conclusion
|
||||
'enfin': {
|
||||
alternatives: ['finalement', 'au final', 'pour finir', 'en dernier'],
|
||||
weight: 0.5,
|
||||
contexts: ['conclusion', 'final']
|
||||
},
|
||||
|
||||
'finalement': {
|
||||
alternatives: ['au final', 'en fin de compte', 'pour finir', 'enfin'],
|
||||
weight: 0.4,
|
||||
contexts: ['conclusion', 'final']
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* PATTERNS DE TRANSITION NATURELLE
|
||||
* Selon le style de personnalité
|
||||
*/
|
||||
const PERSONALITY_TRANSITIONS = {
|
||||
'décontracté': {
|
||||
preferred: ['du coup', 'alors', 'bon', 'après', 'sinon'],
|
||||
avoided: ['par conséquent', 'néanmoins', 'toutefois']
|
||||
},
|
||||
|
||||
'technique': {
|
||||
preferred: ['donc', 'ainsi', 'par conséquent', 'résultat'],
|
||||
avoided: ['du coup', 'bon', 'franchement']
|
||||
},
|
||||
|
||||
'commercial': {
|
||||
preferred: ['aussi', 'de plus', 'également', 'qui plus est'],
|
||||
avoided: ['du coup', 'bon', 'franchement']
|
||||
},
|
||||
|
||||
'familier': {
|
||||
preferred: ['du coup', 'bon', 'alors', 'après', 'franchement'],
|
||||
avoided: ['par conséquent', 'néanmoins', 'de surcroît']
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - HUMANISATION TRANSITIONS
|
||||
* @param {Object} input - { content: {}, config: {}, context: {} }
|
||||
* @returns {Object} - { content: {}, stats: {}, debug: {} }
|
||||
*/
|
||||
async function humanizeTransitions(input) {
|
||||
return await tracer.run('TransitionHumanization.humanizeTransitions()', async () => {
|
||||
const { content, config = {}, context = {} } = input;
|
||||
|
||||
const {
|
||||
intensity = 0.6, // Probabilité de remplacement (60%)
|
||||
personalityStyle = null, // Style de personnalité pour guidage
|
||||
avoidRepetition = true, // Éviter répétitions excessives
|
||||
preserveFormal = false, // Préserver style formel
|
||||
csvData = null // Données pour personnalité
|
||||
} = config;
|
||||
|
||||
await tracer.annotate({
|
||||
technique: 'transition_humanization',
|
||||
intensity,
|
||||
personalityStyle: personalityStyle || csvData?.personality?.style,
|
||||
elementsCount: Object.keys(content).length
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🔗 TECHNIQUE 3/3: Humanisation transitions (intensité: ${intensity})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments à humaniser`, 'DEBUG');
|
||||
|
||||
try {
|
||||
const results = {};
|
||||
let totalProcessed = 0;
|
||||
let totalReplacements = 0;
|
||||
let humanizationDetails = [];
|
||||
|
||||
// Extraire style de personnalité
|
||||
const effectivePersonalityStyle = personalityStyle || csvData?.personality?.style || 'neutral';
|
||||
|
||||
// Analyser patterns globaux pour éviter répétitions
|
||||
const globalPatterns = analyzeGlobalTransitionPatterns(content);
|
||||
|
||||
// Traiter chaque élément de contenu
|
||||
for (const [tag, text] of Object.entries(content)) {
|
||||
totalProcessed++;
|
||||
|
||||
if (text.length < 30) {
|
||||
results[tag] = text;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Appliquer humanisation des transitions
|
||||
const humanizationResult = humanizeTextTransitions(text, {
|
||||
intensity,
|
||||
personalityStyle: effectivePersonalityStyle,
|
||||
avoidRepetition,
|
||||
preserveFormal,
|
||||
globalPatterns,
|
||||
tag
|
||||
});
|
||||
|
||||
results[tag] = humanizationResult.text;
|
||||
|
||||
if (humanizationResult.replacements.length > 0) {
|
||||
totalReplacements += humanizationResult.replacements.length;
|
||||
humanizationDetails.push({
|
||||
tag,
|
||||
replacements: humanizationResult.replacements,
|
||||
transitionsDetected: humanizationResult.transitionsFound
|
||||
});
|
||||
|
||||
logSh(` 🔄 [${tag}]: ${humanizationResult.replacements.length} transitions humanisées`, 'DEBUG');
|
||||
} else {
|
||||
logSh(` ➡️ [${tag}]: Transitions déjà naturelles`, 'DEBUG');
|
||||
}
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: totalProcessed,
|
||||
totalReplacements,
|
||||
avgReplacementsPerElement: Math.round(totalReplacements / totalProcessed * 100) / 100,
|
||||
elementsWithTransitions: humanizationDetails.length,
|
||||
personalityStyle: effectivePersonalityStyle,
|
||||
duration,
|
||||
technique: 'transition_humanization'
|
||||
};
|
||||
|
||||
logSh(`✅ HUMANISATION TRANSITIONS: ${stats.totalReplacements} remplacements sur ${stats.elementsWithTransitions}/${stats.processed} éléments en ${duration}ms`, 'INFO');
|
||||
|
||||
await tracer.event('Transition humanization terminée', stats);
|
||||
|
||||
return {
|
||||
content: results,
|
||||
stats,
|
||||
debug: {
|
||||
technique: 'transition_humanization',
|
||||
config: { intensity, personalityStyle: effectivePersonalityStyle, avoidRepetition },
|
||||
humanizations: humanizationDetails,
|
||||
globalPatterns
|
||||
}
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ HUMANISATION TRANSITIONS échouée après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
throw new Error(`TransitionHumanization failed: ${error.message}`);
|
||||
}
|
||||
}, input);
|
||||
}
|
||||
|
||||
/**
|
||||
* Humaniser les transitions d'un texte
|
||||
*/
|
||||
function humanizeTextTransitions(text, config) {
|
||||
const { intensity, personalityStyle, avoidRepetition, preserveFormal, globalPatterns, tag } = config;
|
||||
|
||||
let humanizedText = text;
|
||||
const replacements = [];
|
||||
const transitionsFound = [];
|
||||
|
||||
// Statistiques usage pour éviter répétitions
|
||||
const usageStats = {};
|
||||
|
||||
// Traiter chaque connecteur du dictionnaire
|
||||
for (const [transition, transitionData] of Object.entries(TRANSITION_REPLACEMENTS)) {
|
||||
const { alternatives, weight, contexts } = transitionData;
|
||||
|
||||
// Rechercher occurrences (insensible à la casse, mais préserver limites mots)
|
||||
const regex = new RegExp(`\\b${escapeRegex(transition)}\\b`, 'gi');
|
||||
const matches = [...text.matchAll(regex)];
|
||||
|
||||
if (matches.length > 0) {
|
||||
transitionsFound.push(transition);
|
||||
|
||||
// Décider si on remplace selon intensité et poids
|
||||
const shouldReplace = Math.random() < (intensity * weight);
|
||||
|
||||
if (shouldReplace && !preserveFormal) {
|
||||
// Sélectionner meilleure alternative
|
||||
const selectedAlternative = selectBestTransitionAlternative(
|
||||
alternatives,
|
||||
personalityStyle,
|
||||
usageStats,
|
||||
avoidRepetition
|
||||
);
|
||||
|
||||
// Appliquer remplacement en préservant la casse
|
||||
humanizedText = humanizedText.replace(regex, (match) => {
|
||||
return preserveCase(match, selectedAlternative);
|
||||
});
|
||||
|
||||
// Enregistrer usage
|
||||
usageStats[selectedAlternative] = (usageStats[selectedAlternative] || 0) + matches.length;
|
||||
|
||||
replacements.push({
|
||||
original: transition,
|
||||
replacement: selectedAlternative,
|
||||
occurrences: matches.length,
|
||||
contexts,
|
||||
personalityMatch: isPersonalityAppropriate(selectedAlternative, personalityStyle)
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Post-processing : éviter accumulations
|
||||
if (avoidRepetition) {
|
||||
const repetitionCleaned = reduceTransitionRepetition(humanizedText, usageStats);
|
||||
humanizedText = repetitionCleaned.text;
|
||||
replacements.push(...repetitionCleaned.additionalChanges);
|
||||
}
|
||||
|
||||
return {
|
||||
text: humanizedText,
|
||||
replacements,
|
||||
transitionsFound
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Sélectionner meilleure alternative de transition
|
||||
*/
|
||||
function selectBestTransitionAlternative(alternatives, personalityStyle, usageStats, avoidRepetition) {
|
||||
// Filtrer selon personnalité
|
||||
const personalityFiltered = alternatives.filter(alt =>
|
||||
isPersonalityAppropriate(alt, personalityStyle)
|
||||
);
|
||||
|
||||
const candidateList = personalityFiltered.length > 0 ? personalityFiltered : alternatives;
|
||||
|
||||
if (!avoidRepetition) {
|
||||
return candidateList[Math.floor(Math.random() * candidateList.length)];
|
||||
}
|
||||
|
||||
// Éviter les alternatives déjà trop utilisées
|
||||
const lessUsedAlternatives = candidateList.filter(alt =>
|
||||
(usageStats[alt] || 0) < 2
|
||||
);
|
||||
|
||||
const finalList = lessUsedAlternatives.length > 0 ? lessUsedAlternatives : candidateList;
|
||||
return finalList[Math.floor(Math.random() * finalList.length)];
|
||||
}
|
||||
|
||||
/**
|
||||
* Vérifier si alternative appropriée pour personnalité
|
||||
*/
|
||||
function isPersonalityAppropriate(alternative, personalityStyle) {
|
||||
if (!personalityStyle || personalityStyle === 'neutral') return true;
|
||||
|
||||
const styleMapping = {
|
||||
'décontracté': PERSONALITY_TRANSITIONS.décontracté,
|
||||
'technique': PERSONALITY_TRANSITIONS.technique,
|
||||
'commercial': PERSONALITY_TRANSITIONS.commercial,
|
||||
'familier': PERSONALITY_TRANSITIONS.familier
|
||||
};
|
||||
|
||||
const styleConfig = styleMapping[personalityStyle.toLowerCase()];
|
||||
if (!styleConfig) return true;
|
||||
|
||||
// Éviter les connecteurs inappropriés
|
||||
if (styleConfig.avoided.includes(alternative)) return false;
|
||||
|
||||
// Privilégier les connecteurs préférés
|
||||
if (styleConfig.preferred.includes(alternative)) return true;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Réduire répétitions excessives de transitions
|
||||
*/
|
||||
function reduceTransitionRepetition(text, usageStats) {
|
||||
let processedText = text;
|
||||
const additionalChanges = [];
|
||||
|
||||
// Identifier connecteurs surutilisés (>3 fois)
|
||||
const overusedTransitions = Object.entries(usageStats)
|
||||
.filter(([transition, count]) => count > 3)
|
||||
.map(([transition]) => transition);
|
||||
|
||||
for (const overusedTransition of overusedTransitions) {
|
||||
// Remplacer quelques occurrences par des alternatives
|
||||
const regex = new RegExp(`\\b${escapeRegex(overusedTransition)}\\b`, 'g');
|
||||
let replacements = 0;
|
||||
|
||||
processedText = processedText.replace(regex, (match, offset) => {
|
||||
// Remplacer 1 occurrence sur 3 environ
|
||||
if (Math.random() < 0.33 && replacements < 2) {
|
||||
replacements++;
|
||||
const alternatives = findAlternativesFor(overusedTransition);
|
||||
const alternative = alternatives[Math.floor(Math.random() * alternatives.length)];
|
||||
|
||||
additionalChanges.push({
|
||||
type: 'repetition_reduction',
|
||||
original: overusedTransition,
|
||||
replacement: alternative,
|
||||
reason: 'overuse'
|
||||
});
|
||||
|
||||
return preserveCase(match, alternative);
|
||||
}
|
||||
return match;
|
||||
});
|
||||
}
|
||||
|
||||
return { text: processedText, additionalChanges };
|
||||
}
|
||||
|
||||
/**
|
||||
* Trouver alternatives pour un connecteur donné
|
||||
*/
|
||||
function findAlternativesFor(transition) {
|
||||
// Chercher dans le dictionnaire
|
||||
for (const [key, data] of Object.entries(TRANSITION_REPLACEMENTS)) {
|
||||
if (data.alternatives.includes(transition)) {
|
||||
return data.alternatives.filter(alt => alt !== transition);
|
||||
}
|
||||
}
|
||||
|
||||
// Alternatives génériques
|
||||
const genericAlternatives = {
|
||||
'du coup': ['alors', 'donc', 'ainsi'],
|
||||
'alors': ['du coup', 'donc', 'ensuite'],
|
||||
'donc': ['du coup', 'alors', 'ainsi'],
|
||||
'aussi': ['également', 'de plus', 'en plus'],
|
||||
'mais': ['cependant', 'pourtant', 'néanmoins']
|
||||
};
|
||||
|
||||
return genericAlternatives[transition] || ['donc', 'alors'];
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser patterns globaux de transitions
|
||||
*/
|
||||
function analyzeGlobalTransitionPatterns(content) {
|
||||
const allText = Object.values(content).join(' ');
|
||||
const transitionCounts = {};
|
||||
const repetitionPatterns = [];
|
||||
|
||||
// Compter occurrences globales
|
||||
for (const transition of Object.keys(TRANSITION_REPLACEMENTS)) {
|
||||
const regex = new RegExp(`\\b${escapeRegex(transition)}\\b`, 'gi');
|
||||
const matches = allText.match(regex);
|
||||
if (matches) {
|
||||
transitionCounts[transition] = matches.length;
|
||||
}
|
||||
}
|
||||
|
||||
// Identifier patterns de répétition problématiques
|
||||
const sortedTransitions = Object.entries(transitionCounts)
|
||||
.sort(([,a], [,b]) => b - a)
|
||||
.slice(0, 5); // Top 5 plus utilisées
|
||||
|
||||
sortedTransitions.forEach(([transition, count]) => {
|
||||
if (count > 5) {
|
||||
repetitionPatterns.push({
|
||||
transition,
|
||||
count,
|
||||
severity: count > 10 ? 'high' : count > 7 ? 'medium' : 'low'
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
return {
|
||||
transitionCounts,
|
||||
repetitionPatterns,
|
||||
diversityScore: Object.keys(transitionCounts).length / Math.max(1, Object.values(transitionCounts).reduce((a,b) => a+b, 0))
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Préserver la casse originale
|
||||
*/
|
||||
function preserveCase(original, replacement) {
|
||||
if (original === original.toUpperCase()) {
|
||||
return replacement.toUpperCase();
|
||||
} else if (original[0] === original[0].toUpperCase()) {
|
||||
return replacement.charAt(0).toUpperCase() + replacement.slice(1).toLowerCase();
|
||||
} else {
|
||||
return replacement.toLowerCase();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Échapper caractères regex
|
||||
*/
|
||||
function escapeRegex(text) {
|
||||
return text.replace(/[.*+?^${}()|[\]\\]/g, '\\$&');
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser qualité des transitions d'un texte
|
||||
*/
|
||||
function analyzeTransitionQuality(text) {
|
||||
const sentences = text.split(/[.!?]+/).filter(s => s.trim().length > 5);
|
||||
|
||||
if (sentences.length < 2) {
|
||||
return { score: 100, issues: [], naturalness: 'high' };
|
||||
}
|
||||
|
||||
let mechanicalTransitions = 0;
|
||||
let totalTransitions = 0;
|
||||
const issues = [];
|
||||
|
||||
// Analyser chaque transition
|
||||
sentences.forEach((sentence, index) => {
|
||||
if (index === 0) return;
|
||||
|
||||
const trimmed = sentence.trim();
|
||||
const startsWithTransition = Object.keys(TRANSITION_REPLACEMENTS).some(transition =>
|
||||
trimmed.toLowerCase().startsWith(transition.toLowerCase())
|
||||
);
|
||||
|
||||
if (startsWithTransition) {
|
||||
totalTransitions++;
|
||||
|
||||
// Vérifier si transition mécanique
|
||||
const transition = Object.keys(TRANSITION_REPLACEMENTS).find(t =>
|
||||
trimmed.toLowerCase().startsWith(t.toLowerCase())
|
||||
);
|
||||
|
||||
if (transition && TRANSITION_REPLACEMENTS[transition].weight > 0.7) {
|
||||
mechanicalTransitions++;
|
||||
issues.push({
|
||||
type: 'mechanical_transition',
|
||||
transition,
|
||||
suggestion: TRANSITION_REPLACEMENTS[transition].alternatives[0]
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
const mechanicalRatio = totalTransitions > 0 ? mechanicalTransitions / totalTransitions : 0;
|
||||
const score = Math.max(0, 100 - (mechanicalRatio * 100));
|
||||
|
||||
let naturalness = 'high';
|
||||
if (mechanicalRatio > 0.5) naturalness = 'low';
|
||||
else if (mechanicalRatio > 0.25) naturalness = 'medium';
|
||||
|
||||
return { score: Math.round(score), issues, naturalness, mechanicalRatio };
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
humanizeTransitions, // ← MAIN ENTRY POINT
|
||||
humanizeTextTransitions,
|
||||
analyzeTransitionQuality,
|
||||
analyzeGlobalTransitionPatterns,
|
||||
TRANSITION_REPLACEMENTS,
|
||||
PERSONALITY_TRANSITIONS
|
||||
};
|
||||
422
lib/selective-enhancement/SelectiveCore.js
Normal file
422
lib/selective-enhancement/SelectiveCore.js
Normal file
@ -0,0 +1,422 @@
|
||||
// ========================================
|
||||
// SELECTIVE CORE - MOTEUR MODULAIRE
|
||||
// Responsabilité: Moteur selective enhancement réutilisable sur tout contenu
|
||||
// Architecture: Couches applicables à la demande
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
|
||||
/**
|
||||
* MAIN ENTRY POINT - APPLICATION COUCHE SELECTIVE ENHANCEMENT
|
||||
* Input: contenu existant + configuration selective
|
||||
* Output: contenu avec couche selective appliquée
|
||||
*/
|
||||
async function applySelectiveLayer(existingContent, config = {}) {
|
||||
return await tracer.run('SelectiveCore.applySelectiveLayer()', async () => {
|
||||
const {
|
||||
layerType = 'technical', // 'technical' | 'transitions' | 'style' | 'all'
|
||||
llmProvider = 'auto', // 'claude' | 'gpt4' | 'gemini' | 'mistral' | 'auto'
|
||||
analysisMode = true, // Analyser avant d'appliquer
|
||||
preserveStructure = true,
|
||||
csvData = null,
|
||||
context = {}
|
||||
} = config;
|
||||
|
||||
await tracer.annotate({
|
||||
selectiveLayer: true,
|
||||
layerType,
|
||||
llmProvider,
|
||||
analysisMode,
|
||||
elementsCount: Object.keys(existingContent).length
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🔧 APPLICATION COUCHE SELECTIVE: ${layerType} (${llmProvider})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(existingContent).length} éléments | Mode: ${analysisMode ? 'analysé' : 'direct'}`, 'INFO');
|
||||
|
||||
try {
|
||||
let enhancedContent = {};
|
||||
let layerStats = {};
|
||||
|
||||
// Sélection automatique du LLM si 'auto'
|
||||
const selectedLLM = selectOptimalLLM(layerType, llmProvider);
|
||||
|
||||
// Application selon type de couche
|
||||
switch (layerType) {
|
||||
case 'technical':
|
||||
const technicalResult = await applyTechnicalEnhancement(existingContent, { ...config, llmProvider: selectedLLM });
|
||||
enhancedContent = technicalResult.content;
|
||||
layerStats = technicalResult.stats;
|
||||
break;
|
||||
|
||||
case 'transitions':
|
||||
const transitionResult = await applyTransitionEnhancement(existingContent, { ...config, llmProvider: selectedLLM });
|
||||
enhancedContent = transitionResult.content;
|
||||
layerStats = transitionResult.stats;
|
||||
break;
|
||||
|
||||
case 'style':
|
||||
const styleResult = await applyStyleEnhancement(existingContent, { ...config, llmProvider: selectedLLM });
|
||||
enhancedContent = styleResult.content;
|
||||
layerStats = styleResult.stats;
|
||||
break;
|
||||
|
||||
case 'all':
|
||||
const allResult = await applyAllSelectiveLayers(existingContent, config);
|
||||
enhancedContent = allResult.content;
|
||||
layerStats = allResult.stats;
|
||||
break;
|
||||
|
||||
default:
|
||||
throw new Error(`Type de couche selective inconnue: ${layerType}`);
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
layerType,
|
||||
llmProvider: selectedLLM,
|
||||
elementsProcessed: Object.keys(existingContent).length,
|
||||
elementsEnhanced: countEnhancedElements(existingContent, enhancedContent),
|
||||
duration,
|
||||
...layerStats
|
||||
};
|
||||
|
||||
logSh(`✅ COUCHE SELECTIVE APPLIQUÉE: ${stats.elementsEnhanced}/${stats.elementsProcessed} améliorés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event('Couche selective appliquée', stats);
|
||||
|
||||
return {
|
||||
content: enhancedContent,
|
||||
stats,
|
||||
original: existingContent,
|
||||
config: { ...config, llmProvider: selectedLLM }
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ COUCHE SELECTIVE ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: retourner contenu original
|
||||
logSh(`🔄 Fallback: contenu original conservé`, 'WARNING');
|
||||
return {
|
||||
content: existingContent,
|
||||
stats: { fallback: true, duration },
|
||||
original: existingContent,
|
||||
config,
|
||||
error: error.message
|
||||
};
|
||||
}
|
||||
}, { existingContent: Object.keys(existingContent), config });
|
||||
}
|
||||
|
||||
/**
|
||||
* APPLICATION TECHNIQUE MODULAIRE
|
||||
*/
|
||||
async function applyTechnicalEnhancement(content, config = {}) {
|
||||
const { TechnicalLayer } = require('./TechnicalLayer');
|
||||
const layer = new TechnicalLayer();
|
||||
return await layer.apply(content, config);
|
||||
}
|
||||
|
||||
/**
|
||||
* APPLICATION TRANSITIONS MODULAIRE
|
||||
*/
|
||||
async function applyTransitionEnhancement(content, config = {}) {
|
||||
const { TransitionLayer } = require('./TransitionLayer');
|
||||
const layer = new TransitionLayer();
|
||||
return await layer.apply(content, config);
|
||||
}
|
||||
|
||||
/**
|
||||
* APPLICATION STYLE MODULAIRE
|
||||
*/
|
||||
async function applyStyleEnhancement(content, config = {}) {
|
||||
const { StyleLayer } = require('./StyleLayer');
|
||||
const layer = new StyleLayer();
|
||||
return await layer.apply(content, config);
|
||||
}
|
||||
|
||||
/**
|
||||
* APPLICATION TOUTES COUCHES SÉQUENTIELLES
|
||||
*/
|
||||
async function applyAllSelectiveLayers(content, config = {}) {
|
||||
logSh(`🔄 Application séquentielle toutes couches selective`, 'DEBUG');
|
||||
|
||||
let currentContent = content;
|
||||
const allStats = {
|
||||
steps: [],
|
||||
totalDuration: 0,
|
||||
totalEnhancements: 0
|
||||
};
|
||||
|
||||
const steps = [
|
||||
{ name: 'technical', llm: 'gpt4' },
|
||||
{ name: 'transitions', llm: 'gemini' },
|
||||
{ name: 'style', llm: 'mistral' }
|
||||
];
|
||||
|
||||
for (const step of steps) {
|
||||
try {
|
||||
logSh(` 🔧 Étape: ${step.name} (${step.llm})`, 'DEBUG');
|
||||
|
||||
const stepResult = await applySelectiveLayer(currentContent, {
|
||||
...config,
|
||||
layerType: step.name,
|
||||
llmProvider: step.llm
|
||||
});
|
||||
|
||||
currentContent = stepResult.content;
|
||||
|
||||
allStats.steps.push({
|
||||
name: step.name,
|
||||
llm: step.llm,
|
||||
...stepResult.stats
|
||||
});
|
||||
|
||||
allStats.totalDuration += stepResult.stats.duration;
|
||||
allStats.totalEnhancements += stepResult.stats.elementsEnhanced;
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Étape ${step.name} échouée: ${error.message}`, 'ERROR');
|
||||
|
||||
allStats.steps.push({
|
||||
name: step.name,
|
||||
llm: step.llm,
|
||||
error: error.message,
|
||||
duration: 0,
|
||||
elementsEnhanced: 0
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
content: currentContent,
|
||||
stats: allStats
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* ANALYSE BESOIN D'ENHANCEMENT
|
||||
*/
|
||||
async function analyzeEnhancementNeeds(content, config = {}) {
|
||||
logSh(`🔍 Analyse besoins selective enhancement`, 'DEBUG');
|
||||
|
||||
const analysis = {
|
||||
technical: { needed: false, score: 0, elements: [] },
|
||||
transitions: { needed: false, score: 0, elements: [] },
|
||||
style: { needed: false, score: 0, elements: [] },
|
||||
recommendation: 'none'
|
||||
};
|
||||
|
||||
// Analyser chaque élément
|
||||
Object.entries(content).forEach(([tag, text]) => {
|
||||
// Analyse technique (termes techniques manquants)
|
||||
const technicalNeed = assessTechnicalNeed(text, config.csvData);
|
||||
if (technicalNeed.score > 0.3) {
|
||||
analysis.technical.needed = true;
|
||||
analysis.technical.score += technicalNeed.score;
|
||||
analysis.technical.elements.push({ tag, score: technicalNeed.score, reason: technicalNeed.reason });
|
||||
}
|
||||
|
||||
// Analyse transitions (fluidité)
|
||||
const transitionNeed = assessTransitionNeed(text);
|
||||
if (transitionNeed.score > 0.4) {
|
||||
analysis.transitions.needed = true;
|
||||
analysis.transitions.score += transitionNeed.score;
|
||||
analysis.transitions.elements.push({ tag, score: transitionNeed.score, reason: transitionNeed.reason });
|
||||
}
|
||||
|
||||
// Analyse style (personnalité)
|
||||
const styleNeed = assessStyleNeed(text, config.csvData?.personality);
|
||||
if (styleNeed.score > 0.3) {
|
||||
analysis.style.needed = true;
|
||||
analysis.style.score += styleNeed.score;
|
||||
analysis.style.elements.push({ tag, score: styleNeed.score, reason: styleNeed.reason });
|
||||
}
|
||||
});
|
||||
|
||||
// Normaliser scores
|
||||
const elementCount = Object.keys(content).length;
|
||||
analysis.technical.score = analysis.technical.score / elementCount;
|
||||
analysis.transitions.score = analysis.transitions.score / elementCount;
|
||||
analysis.style.score = analysis.style.score / elementCount;
|
||||
|
||||
// Recommandation
|
||||
const scores = [
|
||||
{ type: 'technical', score: analysis.technical.score },
|
||||
{ type: 'transitions', score: analysis.transitions.score },
|
||||
{ type: 'style', score: analysis.style.score }
|
||||
].sort((a, b) => b.score - a.score);
|
||||
|
||||
if (scores[0].score > 0.6) {
|
||||
analysis.recommendation = scores[0].type;
|
||||
} else if (scores[0].score > 0.4) {
|
||||
analysis.recommendation = 'light_' + scores[0].type;
|
||||
}
|
||||
|
||||
logSh(` 📊 Analyse: Tech=${analysis.technical.score.toFixed(2)} | Trans=${analysis.transitions.score.toFixed(2)} | Style=${analysis.style.score.toFixed(2)}`, 'DEBUG');
|
||||
logSh(` 💡 Recommandation: ${analysis.recommendation}`, 'DEBUG');
|
||||
|
||||
return analysis;
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
/**
|
||||
* Sélectionner LLM optimal selon type de couche
|
||||
*/
|
||||
function selectOptimalLLM(layerType, llmProvider) {
|
||||
if (llmProvider !== 'auto') return llmProvider;
|
||||
|
||||
const optimalMapping = {
|
||||
'technical': 'gpt4', // GPT-4 excellent pour précision technique
|
||||
'transitions': 'gemini', // Gemini bon pour fluidité
|
||||
'style': 'mistral', // Mistral excellent pour style personnalité
|
||||
'all': 'claude' // Claude polyvalent pour tout
|
||||
};
|
||||
|
||||
return optimalMapping[layerType] || 'claude';
|
||||
}
|
||||
|
||||
/**
|
||||
* Compter éléments améliorés
|
||||
*/
|
||||
function countEnhancedElements(original, enhanced) {
|
||||
let count = 0;
|
||||
|
||||
Object.keys(original).forEach(tag => {
|
||||
if (enhanced[tag] && enhanced[tag] !== original[tag]) {
|
||||
count++;
|
||||
}
|
||||
});
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
/**
|
||||
* Évaluer besoin technique
|
||||
*/
|
||||
function assessTechnicalNeed(content, csvData) {
|
||||
let score = 0;
|
||||
let reason = [];
|
||||
|
||||
// Manque de termes techniques spécifiques
|
||||
if (csvData?.mc0) {
|
||||
const technicalTerms = ['dibond', 'pmma', 'aluminium', 'fraisage', 'impression', 'gravure', 'découpe'];
|
||||
const contentLower = content.toLowerCase();
|
||||
const foundTerms = technicalTerms.filter(term => contentLower.includes(term));
|
||||
|
||||
if (foundTerms.length === 0 && content.length > 100) {
|
||||
score += 0.4;
|
||||
reason.push('manque_termes_techniques');
|
||||
}
|
||||
}
|
||||
|
||||
// Vocabulaire trop générique
|
||||
const genericWords = ['produit', 'solution', 'service', 'qualité', 'offre'];
|
||||
const genericCount = genericWords.filter(word => content.toLowerCase().includes(word)).length;
|
||||
|
||||
if (genericCount > 2) {
|
||||
score += 0.3;
|
||||
reason.push('vocabulaire_générique');
|
||||
}
|
||||
|
||||
// Manque de précision dimensionnelle/technique
|
||||
if (content.length > 50 && !(/\d+\s*(mm|cm|m|%|°)/.test(content))) {
|
||||
score += 0.2;
|
||||
reason.push('manque_précision_technique');
|
||||
}
|
||||
|
||||
return { score: Math.min(1, score), reason: reason.join(',') };
|
||||
}
|
||||
|
||||
/**
|
||||
* Évaluer besoin transitions
|
||||
*/
|
||||
function assessTransitionNeed(content) {
|
||||
let score = 0;
|
||||
let reason = [];
|
||||
|
||||
const sentences = content.split(/[.!?]+/).filter(s => s.trim().length > 10);
|
||||
|
||||
if (sentences.length < 2) return { score: 0, reason: '' };
|
||||
|
||||
// Connecteurs répétitifs
|
||||
const connectors = ['par ailleurs', 'en effet', 'de plus', 'cependant'];
|
||||
let repetitiveConnectors = 0;
|
||||
|
||||
connectors.forEach(connector => {
|
||||
const matches = (content.match(new RegExp(connector, 'gi')) || []);
|
||||
if (matches.length > 1) repetitiveConnectors++;
|
||||
});
|
||||
|
||||
if (repetitiveConnectors > 1) {
|
||||
score += 0.4;
|
||||
reason.push('connecteurs_répétitifs');
|
||||
}
|
||||
|
||||
// Transitions abruptes (phrases sans connecteurs logiques)
|
||||
let abruptTransitions = 0;
|
||||
for (let i = 1; i < sentences.length; i++) {
|
||||
const sentence = sentences[i].trim().toLowerCase();
|
||||
const hasConnector = connectors.some(conn => sentence.startsWith(conn)) ||
|
||||
/^(puis|ensuite|également|aussi|donc|ainsi)/.test(sentence);
|
||||
|
||||
if (!hasConnector && sentence.length > 30) {
|
||||
abruptTransitions++;
|
||||
}
|
||||
}
|
||||
|
||||
if (abruptTransitions / sentences.length > 0.6) {
|
||||
score += 0.3;
|
||||
reason.push('transitions_abruptes');
|
||||
}
|
||||
|
||||
return { score: Math.min(1, score), reason: reason.join(',') };
|
||||
}
|
||||
|
||||
/**
|
||||
* Évaluer besoin style
|
||||
*/
|
||||
function assessStyleNeed(content, personality) {
|
||||
let score = 0;
|
||||
let reason = [];
|
||||
|
||||
if (!personality) {
|
||||
score += 0.2;
|
||||
reason.push('pas_personnalité');
|
||||
return { score, reason: reason.join(',') };
|
||||
}
|
||||
|
||||
// Style générique (pas de personnalité visible)
|
||||
const personalityWords = (personality.vocabulairePref || '').toLowerCase().split(',');
|
||||
const contentLower = content.toLowerCase();
|
||||
|
||||
const personalityFound = personalityWords.some(word =>
|
||||
word.trim() && contentLower.includes(word.trim())
|
||||
);
|
||||
|
||||
if (!personalityFound && content.length > 50) {
|
||||
score += 0.4;
|
||||
reason.push('style_générique');
|
||||
}
|
||||
|
||||
// Niveau technique inadapté
|
||||
if (personality.niveauTechnique === 'accessible' && /\b(optimisation|implémentation|méthodologie)\b/i.test(content)) {
|
||||
score += 0.3;
|
||||
reason.push('trop_technique');
|
||||
}
|
||||
|
||||
return { score: Math.min(1, score), reason: reason.join(',') };
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
applySelectiveLayer, // ← MAIN ENTRY POINT MODULAIRE
|
||||
applyTechnicalEnhancement,
|
||||
applyTransitionEnhancement,
|
||||
applyStyleEnhancement,
|
||||
applyAllSelectiveLayers,
|
||||
analyzeEnhancementNeeds,
|
||||
selectOptimalLLM
|
||||
};
|
||||
553
lib/selective-enhancement/SelectiveLayers.js
Normal file
553
lib/selective-enhancement/SelectiveLayers.js
Normal file
@ -0,0 +1,553 @@
|
||||
// ========================================
|
||||
// SELECTIVE LAYERS - COUCHES COMPOSABLES
|
||||
// Responsabilité: Stacks prédéfinis et couches adaptatives pour selective enhancement
|
||||
// Architecture: Composable layers avec orchestration intelligente
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
const { applySelectiveLayer } = require('./SelectiveCore');
|
||||
|
||||
/**
|
||||
* STACKS PRÉDÉFINIS SELECTIVE ENHANCEMENT
|
||||
*/
|
||||
const PREDEFINED_STACKS = {
|
||||
// Stack léger - Amélioration technique uniquement
|
||||
lightEnhancement: {
|
||||
name: 'lightEnhancement',
|
||||
description: 'Amélioration technique légère avec GPT-4',
|
||||
layers: [
|
||||
{ type: 'technical', llm: 'gpt4', intensity: 0.7 }
|
||||
],
|
||||
layersCount: 1
|
||||
},
|
||||
|
||||
// Stack standard - Technique + Transitions
|
||||
standardEnhancement: {
|
||||
name: 'standardEnhancement',
|
||||
description: 'Amélioration technique et fluidité (GPT-4 + Gemini)',
|
||||
layers: [
|
||||
{ type: 'technical', llm: 'gpt4', intensity: 0.9 },
|
||||
{ type: 'transitions', llm: 'gemini', intensity: 0.8 }
|
||||
],
|
||||
layersCount: 2
|
||||
},
|
||||
|
||||
// Stack complet - Toutes couches séquentielles
|
||||
fullEnhancement: {
|
||||
name: 'fullEnhancement',
|
||||
description: 'Enhancement complet multi-LLM (GPT-4 + Gemini + Mistral)',
|
||||
layers: [
|
||||
{ type: 'technical', llm: 'gpt4', intensity: 1.0 },
|
||||
{ type: 'transitions', llm: 'gemini', intensity: 0.9 },
|
||||
{ type: 'style', llm: 'mistral', intensity: 0.8 }
|
||||
],
|
||||
layersCount: 3
|
||||
},
|
||||
|
||||
// Stack personnalité - Style prioritaire
|
||||
personalityFocus: {
|
||||
name: 'personalityFocus',
|
||||
description: 'Focus personnalité et style avec Mistral + technique légère',
|
||||
layers: [
|
||||
{ type: 'style', llm: 'mistral', intensity: 1.2 },
|
||||
{ type: 'technical', llm: 'gpt4', intensity: 0.6 }
|
||||
],
|
||||
layersCount: 2
|
||||
},
|
||||
|
||||
// Stack fluidité - Transitions prioritaires
|
||||
fluidityFocus: {
|
||||
name: 'fluidityFocus',
|
||||
description: 'Focus fluidité avec Gemini + enhancements légers',
|
||||
layers: [
|
||||
{ type: 'transitions', llm: 'gemini', intensity: 1.1 },
|
||||
{ type: 'technical', llm: 'gpt4', intensity: 0.7 },
|
||||
{ type: 'style', llm: 'mistral', intensity: 0.6 }
|
||||
],
|
||||
layersCount: 3
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* APPLIQUER STACK PRÉDÉFINI
|
||||
*/
|
||||
async function applyPredefinedStack(content, stackName, config = {}) {
|
||||
return await tracer.run('SelectiveLayers.applyPredefinedStack()', async () => {
|
||||
const stack = PREDEFINED_STACKS[stackName];
|
||||
|
||||
if (!stack) {
|
||||
throw new Error(`Stack selective prédéfini inconnu: ${stackName}. Disponibles: ${Object.keys(PREDEFINED_STACKS).join(', ')}`);
|
||||
}
|
||||
|
||||
await tracer.annotate({
|
||||
selectivePredefinedStack: true,
|
||||
stackName,
|
||||
layersCount: stack.layersCount,
|
||||
elementsCount: Object.keys(content).length
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`📦 APPLICATION STACK SELECTIVE: ${stack.name} (${stack.layersCount} couches)`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments | Description: ${stack.description}`, 'INFO');
|
||||
|
||||
try {
|
||||
let currentContent = content;
|
||||
const stackStats = {
|
||||
stackName,
|
||||
layers: [],
|
||||
totalModifications: 0,
|
||||
totalDuration: 0,
|
||||
success: true
|
||||
};
|
||||
|
||||
// Appliquer chaque couche séquentiellement
|
||||
for (let i = 0; i < stack.layers.length; i++) {
|
||||
const layer = stack.layers[i];
|
||||
|
||||
try {
|
||||
logSh(` 🔧 Couche ${i + 1}/${stack.layersCount}: ${layer.type} (${layer.llm})`, 'DEBUG');
|
||||
|
||||
const layerResult = await applySelectiveLayer(currentContent, {
|
||||
...config,
|
||||
layerType: layer.type,
|
||||
llmProvider: layer.llm,
|
||||
intensity: layer.intensity,
|
||||
analysisMode: true
|
||||
});
|
||||
|
||||
currentContent = layerResult.content;
|
||||
|
||||
stackStats.layers.push({
|
||||
order: i + 1,
|
||||
type: layer.type,
|
||||
llm: layer.llm,
|
||||
intensity: layer.intensity,
|
||||
elementsEnhanced: layerResult.stats.elementsEnhanced,
|
||||
duration: layerResult.stats.duration,
|
||||
success: !layerResult.stats.fallback
|
||||
});
|
||||
|
||||
stackStats.totalModifications += layerResult.stats.elementsEnhanced;
|
||||
stackStats.totalDuration += layerResult.stats.duration;
|
||||
|
||||
logSh(` ✅ Couche ${layer.type}: ${layerResult.stats.elementsEnhanced} améliorations`, 'DEBUG');
|
||||
|
||||
} catch (layerError) {
|
||||
logSh(` ❌ Couche ${layer.type} échouée: ${layerError.message}`, 'ERROR');
|
||||
|
||||
stackStats.layers.push({
|
||||
order: i + 1,
|
||||
type: layer.type,
|
||||
llm: layer.llm,
|
||||
error: layerError.message,
|
||||
duration: 0,
|
||||
success: false
|
||||
});
|
||||
|
||||
// Continuer avec les autres couches
|
||||
}
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const successfulLayers = stackStats.layers.filter(l => l.success).length;
|
||||
|
||||
logSh(`✅ STACK SELECTIVE ${stackName}: ${successfulLayers}/${stack.layersCount} couches | ${stackStats.totalModifications} modifications (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event('Stack selective appliqué', { ...stackStats, totalDuration: duration });
|
||||
|
||||
return {
|
||||
content: currentContent,
|
||||
stats: { ...stackStats, totalDuration: duration },
|
||||
original: content,
|
||||
stackApplied: stackName
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ STACK SELECTIVE ${stackName} ÉCHOUÉ après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
return {
|
||||
content,
|
||||
stats: { stackName, error: error.message, duration, success: false },
|
||||
original: content,
|
||||
fallback: true
|
||||
};
|
||||
}
|
||||
}, { content: Object.keys(content), stackName, config });
|
||||
}
|
||||
|
||||
/**
|
||||
* APPLIQUER COUCHES ADAPTATIVES
|
||||
*/
|
||||
async function applyAdaptiveLayers(content, config = {}) {
|
||||
return await tracer.run('SelectiveLayers.applyAdaptiveLayers()', async () => {
|
||||
const {
|
||||
maxIntensity = 1.0,
|
||||
analysisThreshold = 0.4,
|
||||
csvData = null
|
||||
} = config;
|
||||
|
||||
await tracer.annotate({
|
||||
selectiveAdaptiveLayers: true,
|
||||
maxIntensity,
|
||||
analysisThreshold,
|
||||
elementsCount: Object.keys(content).length
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🧠 APPLICATION COUCHES ADAPTATIVES SELECTIVE`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments | Seuil: ${analysisThreshold}`, 'INFO');
|
||||
|
||||
try {
|
||||
// 1. Analyser besoins de chaque type de couche
|
||||
const needsAnalysis = await analyzeSelectiveNeeds(content, csvData);
|
||||
|
||||
logSh(` 📋 Analyse besoins: Tech=${needsAnalysis.technical.score.toFixed(2)} | Trans=${needsAnalysis.transitions.score.toFixed(2)} | Style=${needsAnalysis.style.score.toFixed(2)}`, 'DEBUG');
|
||||
|
||||
// 2. Déterminer couches à appliquer selon scores
|
||||
const layersToApply = [];
|
||||
|
||||
if (needsAnalysis.technical.needed && needsAnalysis.technical.score > analysisThreshold) {
|
||||
layersToApply.push({
|
||||
type: 'technical',
|
||||
llm: 'gpt4',
|
||||
intensity: Math.min(maxIntensity, needsAnalysis.technical.score * 1.2),
|
||||
priority: 1
|
||||
});
|
||||
}
|
||||
|
||||
if (needsAnalysis.transitions.needed && needsAnalysis.transitions.score > analysisThreshold) {
|
||||
layersToApply.push({
|
||||
type: 'transitions',
|
||||
llm: 'gemini',
|
||||
intensity: Math.min(maxIntensity, needsAnalysis.transitions.score * 1.1),
|
||||
priority: 2
|
||||
});
|
||||
}
|
||||
|
||||
if (needsAnalysis.style.needed && needsAnalysis.style.score > analysisThreshold) {
|
||||
layersToApply.push({
|
||||
type: 'style',
|
||||
llm: 'mistral',
|
||||
intensity: Math.min(maxIntensity, needsAnalysis.style.score),
|
||||
priority: 3
|
||||
});
|
||||
}
|
||||
|
||||
if (layersToApply.length === 0) {
|
||||
logSh(`✅ COUCHES ADAPTATIVES: Aucune amélioration nécessaire`, 'INFO');
|
||||
return {
|
||||
content,
|
||||
stats: {
|
||||
adaptive: true,
|
||||
layersApplied: 0,
|
||||
analysisOnly: true,
|
||||
duration: Date.now() - startTime
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// 3. Appliquer couches par ordre de priorité
|
||||
layersToApply.sort((a, b) => a.priority - b.priority);
|
||||
logSh(` 🎯 Couches sélectionnées: ${layersToApply.map(l => `${l.type}(${l.intensity.toFixed(1)})`).join(' → ')}`, 'INFO');
|
||||
|
||||
let currentContent = content;
|
||||
const adaptiveStats = {
|
||||
layersAnalyzed: 3,
|
||||
layersApplied: layersToApply.length,
|
||||
layers: [],
|
||||
totalModifications: 0,
|
||||
adaptive: true
|
||||
};
|
||||
|
||||
for (const layer of layersToApply) {
|
||||
try {
|
||||
logSh(` 🔧 Couche adaptative: ${layer.type} (intensité: ${layer.intensity.toFixed(1)})`, 'DEBUG');
|
||||
|
||||
const layerResult = await applySelectiveLayer(currentContent, {
|
||||
...config,
|
||||
layerType: layer.type,
|
||||
llmProvider: layer.llm,
|
||||
intensity: layer.intensity,
|
||||
analysisMode: true
|
||||
});
|
||||
|
||||
currentContent = layerResult.content;
|
||||
|
||||
adaptiveStats.layers.push({
|
||||
type: layer.type,
|
||||
llm: layer.llm,
|
||||
intensity: layer.intensity,
|
||||
elementsEnhanced: layerResult.stats.elementsEnhanced,
|
||||
duration: layerResult.stats.duration,
|
||||
success: !layerResult.stats.fallback
|
||||
});
|
||||
|
||||
adaptiveStats.totalModifications += layerResult.stats.elementsEnhanced;
|
||||
|
||||
} catch (layerError) {
|
||||
logSh(` ❌ Couche adaptative ${layer.type} échouée: ${layerError.message}`, 'ERROR');
|
||||
|
||||
adaptiveStats.layers.push({
|
||||
type: layer.type,
|
||||
error: layerError.message,
|
||||
success: false
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const successfulLayers = adaptiveStats.layers.filter(l => l.success).length;
|
||||
|
||||
logSh(`✅ COUCHES ADAPTATIVES: ${successfulLayers}/${layersToApply.length} appliquées | ${adaptiveStats.totalModifications} modifications (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event('Couches adaptatives appliquées', { ...adaptiveStats, totalDuration: duration });
|
||||
|
||||
return {
|
||||
content: currentContent,
|
||||
stats: { ...adaptiveStats, totalDuration: duration },
|
||||
original: content
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ COUCHES ADAPTATIVES ÉCHOUÉES après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
return {
|
||||
content,
|
||||
stats: { adaptive: true, error: error.message, duration },
|
||||
original: content,
|
||||
fallback: true
|
||||
};
|
||||
}
|
||||
}, { content: Object.keys(content), config });
|
||||
}
|
||||
|
||||
/**
|
||||
* PIPELINE COUCHES PERSONNALISÉ
|
||||
*/
|
||||
async function applyLayerPipeline(content, layerSequence, config = {}) {
|
||||
return await tracer.run('SelectiveLayers.applyLayerPipeline()', async () => {
|
||||
if (!Array.isArray(layerSequence) || layerSequence.length === 0) {
|
||||
throw new Error('Séquence de couches invalide ou vide');
|
||||
}
|
||||
|
||||
await tracer.annotate({
|
||||
selectiveLayerPipeline: true,
|
||||
pipelineLength: layerSequence.length,
|
||||
elementsCount: Object.keys(content).length
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🔄 PIPELINE COUCHES SELECTIVE PERSONNALISÉ: ${layerSequence.length} étapes`, 'INFO');
|
||||
|
||||
try {
|
||||
let currentContent = content;
|
||||
const pipelineStats = {
|
||||
pipelineLength: layerSequence.length,
|
||||
steps: [],
|
||||
totalModifications: 0,
|
||||
success: true
|
||||
};
|
||||
|
||||
for (let i = 0; i < layerSequence.length; i++) {
|
||||
const step = layerSequence[i];
|
||||
|
||||
try {
|
||||
logSh(` 📍 Étape ${i + 1}/${layerSequence.length}: ${step.type} (${step.llm || 'auto'})`, 'DEBUG');
|
||||
|
||||
const stepResult = await applySelectiveLayer(currentContent, {
|
||||
...config,
|
||||
...step
|
||||
});
|
||||
|
||||
currentContent = stepResult.content;
|
||||
|
||||
pipelineStats.steps.push({
|
||||
order: i + 1,
|
||||
...step,
|
||||
elementsEnhanced: stepResult.stats.elementsEnhanced,
|
||||
duration: stepResult.stats.duration,
|
||||
success: !stepResult.stats.fallback
|
||||
});
|
||||
|
||||
pipelineStats.totalModifications += stepResult.stats.elementsEnhanced;
|
||||
|
||||
} catch (stepError) {
|
||||
logSh(` ❌ Étape ${i + 1} échouée: ${stepError.message}`, 'ERROR');
|
||||
|
||||
pipelineStats.steps.push({
|
||||
order: i + 1,
|
||||
...step,
|
||||
error: stepError.message,
|
||||
success: false
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const successfulSteps = pipelineStats.steps.filter(s => s.success).length;
|
||||
|
||||
logSh(`✅ PIPELINE SELECTIVE: ${successfulSteps}/${layerSequence.length} étapes | ${pipelineStats.totalModifications} modifications (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event('Pipeline selective appliqué', { ...pipelineStats, totalDuration: duration });
|
||||
|
||||
return {
|
||||
content: currentContent,
|
||||
stats: { ...pipelineStats, totalDuration: duration },
|
||||
original: content
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ PIPELINE SELECTIVE ÉCHOUÉ après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
return {
|
||||
content,
|
||||
stats: { error: error.message, duration, success: false },
|
||||
original: content,
|
||||
fallback: true
|
||||
};
|
||||
}
|
||||
}, { content: Object.keys(content), layerSequence, config });
|
||||
}
|
||||
|
||||
// ============= HELPER FUNCTIONS =============
|
||||
|
||||
/**
|
||||
* Analyser besoins selective enhancement
|
||||
*/
|
||||
async function analyzeSelectiveNeeds(content, csvData) {
|
||||
const analysis = {
|
||||
technical: { needed: false, score: 0, elements: [] },
|
||||
transitions: { needed: false, score: 0, elements: [] },
|
||||
style: { needed: false, score: 0, elements: [] }
|
||||
};
|
||||
|
||||
// Analyser chaque élément pour tous types de besoins
|
||||
Object.entries(content).forEach(([tag, text]) => {
|
||||
// Analyse technique (import depuis SelectiveCore logic)
|
||||
const technicalNeed = assessTechnicalNeed(text, csvData);
|
||||
if (technicalNeed.score > 0.3) {
|
||||
analysis.technical.needed = true;
|
||||
analysis.technical.score += technicalNeed.score;
|
||||
analysis.technical.elements.push({ tag, score: technicalNeed.score });
|
||||
}
|
||||
|
||||
// Analyse transitions
|
||||
const transitionNeed = assessTransitionNeed(text);
|
||||
if (transitionNeed.score > 0.3) {
|
||||
analysis.transitions.needed = true;
|
||||
analysis.transitions.score += transitionNeed.score;
|
||||
analysis.transitions.elements.push({ tag, score: transitionNeed.score });
|
||||
}
|
||||
|
||||
// Analyse style
|
||||
const styleNeed = assessStyleNeed(text, csvData?.personality);
|
||||
if (styleNeed.score > 0.3) {
|
||||
analysis.style.needed = true;
|
||||
analysis.style.score += styleNeed.score;
|
||||
analysis.style.elements.push({ tag, score: styleNeed.score });
|
||||
}
|
||||
});
|
||||
|
||||
// Normaliser scores
|
||||
const elementCount = Object.keys(content).length;
|
||||
analysis.technical.score = analysis.technical.score / elementCount;
|
||||
analysis.transitions.score = analysis.transitions.score / elementCount;
|
||||
analysis.style.score = analysis.style.score / elementCount;
|
||||
|
||||
return analysis;
|
||||
}
|
||||
|
||||
/**
|
||||
* Évaluer besoin technique (simplifié de SelectiveCore)
|
||||
*/
|
||||
function assessTechnicalNeed(content, csvData) {
|
||||
let score = 0;
|
||||
|
||||
// Manque de termes techniques spécifiques
|
||||
if (csvData?.mc0) {
|
||||
const technicalTerms = ['dibond', 'pmma', 'aluminium', 'fraisage', 'impression', 'gravure'];
|
||||
const foundTerms = technicalTerms.filter(term => content.toLowerCase().includes(term));
|
||||
|
||||
if (foundTerms.length === 0 && content.length > 100) {
|
||||
score += 0.4;
|
||||
}
|
||||
}
|
||||
|
||||
// Vocabulaire générique
|
||||
const genericWords = ['produit', 'solution', 'service', 'qualité'];
|
||||
const genericCount = genericWords.filter(word => content.toLowerCase().includes(word)).length;
|
||||
|
||||
if (genericCount > 2) score += 0.3;
|
||||
|
||||
return { score: Math.min(1, score) };
|
||||
}
|
||||
|
||||
/**
|
||||
* Évaluer besoin transitions (simplifié)
|
||||
*/
|
||||
function assessTransitionNeed(content) {
|
||||
const sentences = content.split(/[.!?]+/).filter(s => s.trim().length > 10);
|
||||
if (sentences.length < 2) return { score: 0 };
|
||||
|
||||
let score = 0;
|
||||
|
||||
// Connecteurs répétitifs
|
||||
const connectors = ['par ailleurs', 'en effet', 'de plus'];
|
||||
let repetitions = 0;
|
||||
|
||||
connectors.forEach(connector => {
|
||||
const matches = (content.match(new RegExp(connector, 'gi')) || []);
|
||||
if (matches.length > 1) repetitions++;
|
||||
});
|
||||
|
||||
if (repetitions > 1) score += 0.4;
|
||||
|
||||
return { score: Math.min(1, score) };
|
||||
}
|
||||
|
||||
/**
|
||||
* Évaluer besoin style (simplifié)
|
||||
*/
|
||||
function assessStyleNeed(content, personality) {
|
||||
let score = 0;
|
||||
|
||||
if (!personality) {
|
||||
score += 0.2;
|
||||
return { score };
|
||||
}
|
||||
|
||||
// Style générique
|
||||
const personalityWords = (personality.vocabulairePref || '').toLowerCase().split(',');
|
||||
const personalityFound = personalityWords.some(word =>
|
||||
word.trim() && content.toLowerCase().includes(word.trim())
|
||||
);
|
||||
|
||||
if (!personalityFound && content.length > 50) score += 0.4;
|
||||
|
||||
return { score: Math.min(1, score) };
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir stacks disponibles
|
||||
*/
|
||||
function getAvailableStacks() {
|
||||
return Object.values(PREDEFINED_STACKS);
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
// Main functions
|
||||
applyPredefinedStack,
|
||||
applyAdaptiveLayers,
|
||||
applyLayerPipeline,
|
||||
|
||||
// Utils
|
||||
getAvailableStacks,
|
||||
analyzeSelectiveNeeds,
|
||||
|
||||
// Constants
|
||||
PREDEFINED_STACKS
|
||||
};
|
||||
579
lib/selective-enhancement/SelectiveUtils.js
Normal file
579
lib/selective-enhancement/SelectiveUtils.js
Normal file
@ -0,0 +1,579 @@
|
||||
// ========================================
|
||||
// SELECTIVE UTILS - UTILITAIRES MODULAIRES
|
||||
// Responsabilité: Fonctions utilitaires partagées par tous les modules selective
|
||||
// Architecture: Helper functions réutilisables et composables
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
|
||||
/**
|
||||
* ANALYSEURS DE CONTENU SELECTIVE
|
||||
*/
|
||||
|
||||
/**
|
||||
* Analyser qualité technique d'un contenu
|
||||
*/
|
||||
function analyzeTechnicalQuality(content, contextualTerms = []) {
|
||||
if (!content || typeof content !== 'string') return { score: 0, details: {} };
|
||||
|
||||
const analysis = {
|
||||
score: 0,
|
||||
details: {
|
||||
technicalTermsFound: 0,
|
||||
technicalTermsExpected: contextualTerms.length,
|
||||
genericWordsCount: 0,
|
||||
hasSpecifications: false,
|
||||
hasDimensions: false,
|
||||
contextIntegration: 0
|
||||
}
|
||||
};
|
||||
|
||||
const lowerContent = content.toLowerCase();
|
||||
|
||||
// 1. Compter termes techniques présents
|
||||
contextualTerms.forEach(term => {
|
||||
if (lowerContent.includes(term.toLowerCase())) {
|
||||
analysis.details.technicalTermsFound++;
|
||||
}
|
||||
});
|
||||
|
||||
// 2. Détecter mots génériques
|
||||
const genericWords = ['produit', 'solution', 'service', 'offre', 'article', 'élément'];
|
||||
analysis.details.genericWordsCount = genericWords.filter(word =>
|
||||
lowerContent.includes(word)
|
||||
).length;
|
||||
|
||||
// 3. Vérifier spécifications techniques
|
||||
analysis.details.hasSpecifications = /\b(norme|iso|din|ce)\b/i.test(content);
|
||||
|
||||
// 4. Vérifier dimensions/données techniques
|
||||
analysis.details.hasDimensions = /\d+\s*(mm|cm|m|%|°|kg|g)\b/i.test(content);
|
||||
|
||||
// 5. Calculer score global (0-100)
|
||||
const termRatio = contextualTerms.length > 0 ?
|
||||
(analysis.details.technicalTermsFound / contextualTerms.length) * 40 : 20;
|
||||
const genericPenalty = Math.min(20, analysis.details.genericWordsCount * 5);
|
||||
const specificationBonus = analysis.details.hasSpecifications ? 15 : 0;
|
||||
const dimensionBonus = analysis.details.hasDimensions ? 15 : 0;
|
||||
const lengthBonus = content.length > 100 ? 10 : 0;
|
||||
|
||||
analysis.score = Math.max(0, Math.min(100,
|
||||
termRatio + specificationBonus + dimensionBonus + lengthBonus - genericPenalty
|
||||
));
|
||||
|
||||
return analysis;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser fluidité des transitions
|
||||
*/
|
||||
function analyzeTransitionFluidity(content) {
|
||||
if (!content || typeof content !== 'string') return { score: 0, details: {} };
|
||||
|
||||
const sentences = content.split(/[.!?]+/)
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 5);
|
||||
|
||||
if (sentences.length < 2) {
|
||||
return { score: 100, details: { reason: 'Contenu trop court pour analyse transitions' } };
|
||||
}
|
||||
|
||||
const analysis = {
|
||||
score: 0,
|
||||
details: {
|
||||
sentencesCount: sentences.length,
|
||||
connectorsFound: 0,
|
||||
repetitiveConnectors: 0,
|
||||
abruptTransitions: 0,
|
||||
averageSentenceLength: 0,
|
||||
lengthVariation: 0
|
||||
}
|
||||
};
|
||||
|
||||
// 1. Analyser connecteurs
|
||||
const commonConnectors = ['par ailleurs', 'en effet', 'de plus', 'cependant', 'ainsi', 'donc', 'ensuite'];
|
||||
const connectorCounts = {};
|
||||
|
||||
commonConnectors.forEach(connector => {
|
||||
const matches = (content.match(new RegExp(`\\b${connector}\\b`, 'gi')) || []);
|
||||
connectorCounts[connector] = matches.length;
|
||||
analysis.details.connectorsFound += matches.length;
|
||||
if (matches.length > 1) analysis.details.repetitiveConnectors++;
|
||||
});
|
||||
|
||||
// 2. Détecter transitions abruptes
|
||||
for (let i = 1; i < sentences.length; i++) {
|
||||
const sentence = sentences[i].toLowerCase().trim();
|
||||
const hasConnector = commonConnectors.some(connector =>
|
||||
sentence.startsWith(connector) || sentence.includes(` ${connector} `)
|
||||
);
|
||||
|
||||
if (!hasConnector && sentence.length > 20) {
|
||||
analysis.details.abruptTransitions++;
|
||||
}
|
||||
}
|
||||
|
||||
// 3. Analyser variation de longueur
|
||||
const lengths = sentences.map(s => s.split(/\s+/).length);
|
||||
analysis.details.averageSentenceLength = lengths.reduce((a, b) => a + b, 0) / lengths.length;
|
||||
|
||||
const variance = lengths.reduce((acc, len) =>
|
||||
acc + Math.pow(len - analysis.details.averageSentenceLength, 2), 0
|
||||
) / lengths.length;
|
||||
analysis.details.lengthVariation = Math.sqrt(variance);
|
||||
|
||||
// 4. Calculer score fluidité (0-100)
|
||||
const connectorScore = Math.min(30, (analysis.details.connectorsFound / sentences.length) * 100);
|
||||
const repetitionPenalty = Math.min(20, analysis.details.repetitiveConnectors * 5);
|
||||
const abruptPenalty = Math.min(30, (analysis.details.abruptTransitions / sentences.length) * 50);
|
||||
const variationScore = Math.min(20, analysis.details.lengthVariation * 2);
|
||||
|
||||
analysis.score = Math.max(0, Math.min(100,
|
||||
connectorScore + variationScore - repetitionPenalty - abruptPenalty + 50
|
||||
));
|
||||
|
||||
return analysis;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser cohérence de style
|
||||
*/
|
||||
function analyzeStyleConsistency(content, expectedPersonality = null) {
|
||||
if (!content || typeof content !== 'string') return { score: 0, details: {} };
|
||||
|
||||
const analysis = {
|
||||
score: 0,
|
||||
details: {
|
||||
personalityAlignment: 0,
|
||||
toneConsistency: 0,
|
||||
vocabularyLevel: 'standard',
|
||||
formalityScore: 0,
|
||||
personalityWordsFound: 0
|
||||
}
|
||||
};
|
||||
|
||||
// 1. Analyser alignement personnalité
|
||||
if (expectedPersonality && expectedPersonality.vocabulairePref) {
|
||||
const personalityWords = expectedPersonality.vocabulairePref.toLowerCase().split(',');
|
||||
const contentLower = content.toLowerCase();
|
||||
|
||||
personalityWords.forEach(word => {
|
||||
if (word.trim() && contentLower.includes(word.trim())) {
|
||||
analysis.details.personalityWordsFound++;
|
||||
}
|
||||
});
|
||||
|
||||
analysis.details.personalityAlignment = personalityWords.length > 0 ?
|
||||
(analysis.details.personalityWordsFound / personalityWords.length) * 100 : 0;
|
||||
}
|
||||
|
||||
// 2. Analyser niveau vocabulaire
|
||||
const technicalWords = content.match(/\b\w{8,}\b/g) || [];
|
||||
const totalWords = content.split(/\s+/).length;
|
||||
const techRatio = technicalWords.length / totalWords;
|
||||
|
||||
if (techRatio > 0.15) analysis.details.vocabularyLevel = 'expert';
|
||||
else if (techRatio < 0.05) analysis.details.vocabularyLevel = 'accessible';
|
||||
else analysis.details.vocabularyLevel = 'standard';
|
||||
|
||||
// 3. Analyser formalité
|
||||
const formalIndicators = ['il convient de', 'par conséquent', 'néanmoins', 'toutefois'];
|
||||
const casualIndicators = ['du coup', 'sympa', 'cool', 'nickel'];
|
||||
|
||||
let formalCount = formalIndicators.filter(indicator =>
|
||||
content.toLowerCase().includes(indicator)
|
||||
).length;
|
||||
|
||||
let casualCount = casualIndicators.filter(indicator =>
|
||||
content.toLowerCase().includes(indicator)
|
||||
).length;
|
||||
|
||||
analysis.details.formalityScore = formalCount - casualCount; // Positif = formel, négatif = casual
|
||||
|
||||
// 4. Calculer score cohérence (0-100)
|
||||
let baseScore = 50;
|
||||
|
||||
if (expectedPersonality) {
|
||||
baseScore += analysis.details.personalityAlignment * 0.3;
|
||||
|
||||
// Ajustements selon niveau technique attendu
|
||||
const expectedLevel = expectedPersonality.niveauTechnique || 'standard';
|
||||
if (expectedLevel === analysis.details.vocabularyLevel) {
|
||||
baseScore += 20;
|
||||
} else {
|
||||
baseScore -= 10;
|
||||
}
|
||||
}
|
||||
|
||||
// Bonus cohérence tonale
|
||||
const sentences = content.split(/[.!?]+/).filter(s => s.length > 10);
|
||||
if (sentences.length > 1) {
|
||||
baseScore += Math.min(20, analysis.details.lengthVariation || 10);
|
||||
}
|
||||
|
||||
analysis.score = Math.max(0, Math.min(100, baseScore));
|
||||
|
||||
return analysis;
|
||||
}
|
||||
|
||||
/**
|
||||
* COMPARATEURS ET MÉTRIQUES
|
||||
*/
|
||||
|
||||
/**
|
||||
* Comparer deux contenus et calculer taux amélioration
|
||||
*/
|
||||
function compareContentImprovement(original, enhanced, analysisType = 'general') {
|
||||
if (!original || !enhanced) return { improvementRate: 0, details: {} };
|
||||
|
||||
const comparison = {
|
||||
improvementRate: 0,
|
||||
details: {
|
||||
lengthChange: ((enhanced.length - original.length) / original.length) * 100,
|
||||
wordCountChange: 0,
|
||||
structuralChanges: 0,
|
||||
contentPreserved: true
|
||||
}
|
||||
};
|
||||
|
||||
// 1. Analyser changements structurels
|
||||
const originalSentences = original.split(/[.!?]+/).length;
|
||||
const enhancedSentences = enhanced.split(/[.!?]+/).length;
|
||||
comparison.details.structuralChanges = Math.abs(enhancedSentences - originalSentences);
|
||||
|
||||
// 2. Analyser changements de mots
|
||||
const originalWords = original.toLowerCase().split(/\s+/).filter(w => w.length > 2);
|
||||
const enhancedWords = enhanced.toLowerCase().split(/\s+/).filter(w => w.length > 2);
|
||||
comparison.details.wordCountChange = enhancedWords.length - originalWords.length;
|
||||
|
||||
// 3. Vérifier préservation du contenu principal
|
||||
const originalKeyWords = originalWords.filter(w => w.length > 4);
|
||||
const preservedWords = originalKeyWords.filter(w => enhanced.toLowerCase().includes(w));
|
||||
comparison.details.contentPreserved = (preservedWords.length / originalKeyWords.length) > 0.7;
|
||||
|
||||
// 4. Calculer taux amélioration selon type d'analyse
|
||||
switch (analysisType) {
|
||||
case 'technical':
|
||||
const originalTech = analyzeTechnicalQuality(original);
|
||||
const enhancedTech = analyzeTechnicalQuality(enhanced);
|
||||
comparison.improvementRate = enhancedTech.score - originalTech.score;
|
||||
break;
|
||||
|
||||
case 'transitions':
|
||||
const originalFluid = analyzeTransitionFluidity(original);
|
||||
const enhancedFluid = analyzeTransitionFluidity(enhanced);
|
||||
comparison.improvementRate = enhancedFluid.score - originalFluid.score;
|
||||
break;
|
||||
|
||||
case 'style':
|
||||
const originalStyle = analyzeStyleConsistency(original);
|
||||
const enhancedStyle = analyzeStyleConsistency(enhanced);
|
||||
comparison.improvementRate = enhancedStyle.score - originalStyle.score;
|
||||
break;
|
||||
|
||||
default:
|
||||
// Amélioration générale (moyenne pondérée)
|
||||
comparison.improvementRate = Math.min(50, Math.abs(comparison.details.lengthChange) * 0.1 +
|
||||
(comparison.details.contentPreserved ? 20 : -20) +
|
||||
Math.min(15, Math.abs(comparison.details.wordCountChange)));
|
||||
}
|
||||
|
||||
return comparison;
|
||||
}
|
||||
|
||||
/**
|
||||
* UTILITAIRES DE CONTENU
|
||||
*/
|
||||
|
||||
/**
|
||||
* Nettoyer contenu généré par LLM
|
||||
*/
|
||||
function cleanGeneratedContent(content, cleaningLevel = 'standard') {
|
||||
if (!content || typeof content !== 'string') return content;
|
||||
|
||||
let cleaned = content.trim();
|
||||
|
||||
// Nettoyage de base
|
||||
cleaned = cleaned.replace(/^(voici\s+)?le\s+contenu\s+(amélioré|modifié|réécrit)[:\s]*/gi, '');
|
||||
cleaned = cleaned.replace(/^(bon,?\s*)?(alors,?\s*)?(voici\s+)?/gi, '');
|
||||
cleaned = cleaned.replace(/^(avec\s+les?\s+)?améliorations?\s*[:\s]*/gi, '');
|
||||
|
||||
// Nettoyage formatage
|
||||
cleaned = cleaned.replace(/\*\*([^*]+)\*\*/g, '$1'); // Gras markdown → texte normal
|
||||
cleaned = cleaned.replace(/\s{2,}/g, ' '); // Espaces multiples
|
||||
cleaned = cleaned.replace(/([.!?])\s*([.!?])/g, '$1 '); // Double ponctuation
|
||||
|
||||
if (cleaningLevel === 'intensive') {
|
||||
// Nettoyage intensif
|
||||
cleaned = cleaned.replace(/^\s*[-*+]\s*/gm, ''); // Puces en début de ligne
|
||||
cleaned = cleaned.replace(/^(pour\s+)?(ce\s+)?(contenu\s*)?[,:]?\s*/gi, '');
|
||||
cleaned = cleaned.replace(/\([^)]*\)/g, ''); // Parenthèses et contenu
|
||||
}
|
||||
|
||||
// Nettoyage final
|
||||
cleaned = cleaned.replace(/^[,.\s]+/, ''); // Début
|
||||
cleaned = cleaned.replace(/[,\s]+$/, ''); // Fin
|
||||
cleaned = cleaned.trim();
|
||||
|
||||
return cleaned;
|
||||
}
|
||||
|
||||
/**
|
||||
* Valider contenu selective
|
||||
*/
|
||||
function validateSelectiveContent(content, originalContent, criteria = {}) {
|
||||
const validation = {
|
||||
isValid: true,
|
||||
score: 0,
|
||||
issues: [],
|
||||
suggestions: []
|
||||
};
|
||||
|
||||
const {
|
||||
minLength = 20,
|
||||
maxLengthChange = 50, // % de changement maximum
|
||||
preserveContent = true,
|
||||
checkTechnicalTerms = true
|
||||
} = criteria;
|
||||
|
||||
// 1. Vérifier longueur
|
||||
if (!content || content.length < minLength) {
|
||||
validation.isValid = false;
|
||||
validation.issues.push('Contenu trop court');
|
||||
validation.suggestions.push('Augmenter la longueur du contenu généré');
|
||||
} else {
|
||||
validation.score += 25;
|
||||
}
|
||||
|
||||
// 2. Vérifier changements de longueur
|
||||
if (originalContent) {
|
||||
const lengthChange = Math.abs((content.length - originalContent.length) / originalContent.length) * 100;
|
||||
|
||||
if (lengthChange > maxLengthChange) {
|
||||
validation.issues.push('Changement de longueur excessif');
|
||||
validation.suggestions.push('Réduire l\'intensité d\'amélioration');
|
||||
} else {
|
||||
validation.score += 25;
|
||||
}
|
||||
|
||||
// 3. Vérifier préservation du contenu
|
||||
if (preserveContent) {
|
||||
const preservation = compareContentImprovement(originalContent, content);
|
||||
|
||||
if (!preservation.details.contentPreserved) {
|
||||
validation.isValid = false;
|
||||
validation.issues.push('Contenu original non préservé');
|
||||
validation.suggestions.push('Améliorer conservation du sens original');
|
||||
} else {
|
||||
validation.score += 25;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 4. Vérifications spécifiques
|
||||
if (checkTechnicalTerms) {
|
||||
const technicalQuality = analyzeTechnicalQuality(content);
|
||||
|
||||
if (technicalQuality.score > 60) {
|
||||
validation.score += 25;
|
||||
} else if (technicalQuality.score < 30) {
|
||||
validation.issues.push('Qualité technique insuffisante');
|
||||
validation.suggestions.push('Ajouter plus de termes techniques spécialisés');
|
||||
}
|
||||
}
|
||||
|
||||
// Score final et validation
|
||||
validation.score = Math.min(100, validation.score);
|
||||
validation.isValid = validation.isValid && validation.score >= 60;
|
||||
|
||||
return validation;
|
||||
}
|
||||
|
||||
/**
|
||||
* UTILITAIRES TECHNIQUES
|
||||
*/
|
||||
|
||||
/**
|
||||
* Chunk array avec gestion intelligente
|
||||
*/
|
||||
function chunkArray(array, chunkSize, smartChunking = false) {
|
||||
if (!Array.isArray(array)) return [];
|
||||
if (array.length <= chunkSize) return [array];
|
||||
|
||||
const chunks = [];
|
||||
|
||||
if (smartChunking) {
|
||||
// Chunking intelligent : éviter de séparer éléments liés
|
||||
let currentChunk = [];
|
||||
|
||||
for (let i = 0; i < array.length; i++) {
|
||||
currentChunk.push(array[i]);
|
||||
|
||||
// Conditions de fin de chunk intelligente
|
||||
const isChunkFull = currentChunk.length >= chunkSize;
|
||||
const isLastElement = i === array.length - 1;
|
||||
const nextElementRelated = i < array.length - 1 &&
|
||||
array[i].tag && array[i + 1].tag &&
|
||||
array[i].tag.includes('FAQ') && array[i + 1].tag.includes('FAQ');
|
||||
|
||||
if ((isChunkFull && !nextElementRelated) || isLastElement) {
|
||||
chunks.push([...currentChunk]);
|
||||
currentChunk = [];
|
||||
}
|
||||
}
|
||||
|
||||
// Ajouter chunk restant si non vide
|
||||
if (currentChunk.length > 0) {
|
||||
if (chunks.length > 0 && chunks[chunks.length - 1].length + currentChunk.length <= chunkSize * 1.2) {
|
||||
// Merger avec dernier chunk si pas trop gros
|
||||
chunks[chunks.length - 1].push(...currentChunk);
|
||||
} else {
|
||||
chunks.push(currentChunk);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Chunking standard
|
||||
for (let i = 0; i < array.length; i += chunkSize) {
|
||||
chunks.push(array.slice(i, i + chunkSize));
|
||||
}
|
||||
}
|
||||
|
||||
return chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sleep avec logging optionnel
|
||||
*/
|
||||
async function sleep(ms, logMessage = null) {
|
||||
if (logMessage) {
|
||||
logSh(`⏳ ${logMessage} (${ms}ms)`, 'DEBUG');
|
||||
}
|
||||
|
||||
return new Promise(resolve => setTimeout(resolve, ms));
|
||||
}
|
||||
|
||||
/**
|
||||
* Mesurer performance d'opération
|
||||
*/
|
||||
function measurePerformance(operationName, startTime = Date.now()) {
|
||||
const endTime = Date.now();
|
||||
const duration = endTime - startTime;
|
||||
|
||||
const performance = {
|
||||
operationName,
|
||||
startTime,
|
||||
endTime,
|
||||
duration,
|
||||
durationFormatted: formatDuration(duration)
|
||||
};
|
||||
|
||||
return performance;
|
||||
}
|
||||
|
||||
/**
|
||||
* Formater durée en format lisible
|
||||
*/
|
||||
function formatDuration(ms) {
|
||||
if (ms < 1000) return `${ms}ms`;
|
||||
if (ms < 60000) return `${(ms / 1000).toFixed(1)}s`;
|
||||
return `${Math.floor(ms / 60000)}m ${Math.floor((ms % 60000) / 1000)}s`;
|
||||
}
|
||||
|
||||
/**
|
||||
* STATISTIQUES ET RAPPORTS
|
||||
*/
|
||||
|
||||
/**
|
||||
* Générer rapport amélioration
|
||||
*/
|
||||
function generateImprovementReport(originalContent, enhancedContent, layerType = 'general') {
|
||||
const report = {
|
||||
layerType,
|
||||
timestamp: new Date().toISOString(),
|
||||
summary: {
|
||||
elementsProcessed: 0,
|
||||
elementsImproved: 0,
|
||||
averageImprovement: 0,
|
||||
totalExecutionTime: 0
|
||||
},
|
||||
details: {
|
||||
byElement: [],
|
||||
qualityMetrics: {},
|
||||
recommendations: []
|
||||
}
|
||||
};
|
||||
|
||||
// Analyser chaque élément
|
||||
Object.keys(originalContent).forEach(tag => {
|
||||
const original = originalContent[tag];
|
||||
const enhanced = enhancedContent[tag];
|
||||
|
||||
if (original && enhanced) {
|
||||
report.summary.elementsProcessed++;
|
||||
|
||||
const improvement = compareContentImprovement(original, enhanced, layerType);
|
||||
|
||||
if (improvement.improvementRate > 0) {
|
||||
report.summary.elementsImproved++;
|
||||
}
|
||||
|
||||
report.summary.averageImprovement += improvement.improvementRate;
|
||||
|
||||
report.details.byElement.push({
|
||||
tag,
|
||||
improvementRate: improvement.improvementRate,
|
||||
lengthChange: improvement.details.lengthChange,
|
||||
contentPreserved: improvement.details.contentPreserved
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
// Calculer moyennes
|
||||
if (report.summary.elementsProcessed > 0) {
|
||||
report.summary.averageImprovement = report.summary.averageImprovement / report.summary.elementsProcessed;
|
||||
}
|
||||
|
||||
// Métriques qualité globales
|
||||
const fullOriginal = Object.values(originalContent).join(' ');
|
||||
const fullEnhanced = Object.values(enhancedContent).join(' ');
|
||||
|
||||
report.details.qualityMetrics = {
|
||||
technical: analyzeTechnicalQuality(fullEnhanced),
|
||||
transitions: analyzeTransitionFluidity(fullEnhanced),
|
||||
style: analyzeStyleConsistency(fullEnhanced)
|
||||
};
|
||||
|
||||
// Recommandations
|
||||
if (report.summary.averageImprovement < 10) {
|
||||
report.details.recommendations.push('Augmenter l\'intensité d\'amélioration');
|
||||
}
|
||||
|
||||
if (report.details.byElement.some(e => !e.contentPreserved)) {
|
||||
report.details.recommendations.push('Améliorer préservation du contenu original');
|
||||
}
|
||||
|
||||
return report;
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
// Analyseurs
|
||||
analyzeTechnicalQuality,
|
||||
analyzeTransitionFluidity,
|
||||
analyzeStyleConsistency,
|
||||
|
||||
// Comparateurs
|
||||
compareContentImprovement,
|
||||
|
||||
// Utilitaires contenu
|
||||
cleanGeneratedContent,
|
||||
validateSelectiveContent,
|
||||
|
||||
// Utilitaires techniques
|
||||
chunkArray,
|
||||
sleep,
|
||||
measurePerformance,
|
||||
formatDuration,
|
||||
|
||||
// Rapports
|
||||
generateImprovementReport
|
||||
};
|
||||
532
lib/selective-enhancement/StyleLayer.js
Normal file
532
lib/selective-enhancement/StyleLayer.js
Normal file
@ -0,0 +1,532 @@
|
||||
// ========================================
|
||||
// STYLE LAYER - COUCHE STYLE MODULAIRE
|
||||
// Responsabilité: Adaptation personnalité modulaire réutilisable
|
||||
// LLM: Mistral (excellence style et personnalité)
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
const { chunkArray, sleep } = require('./SelectiveUtils');
|
||||
|
||||
/**
|
||||
* COUCHE STYLE MODULAIRE
|
||||
*/
|
||||
class StyleLayer {
|
||||
constructor() {
|
||||
this.name = 'StyleEnhancement';
|
||||
this.defaultLLM = 'mistral';
|
||||
this.priority = 3; // Priorité basse - appliqué en dernier
|
||||
}
|
||||
|
||||
/**
|
||||
* MAIN METHOD - Appliquer amélioration style
|
||||
*/
|
||||
async apply(content, config = {}) {
|
||||
return await tracer.run('StyleLayer.apply()', async () => {
|
||||
const {
|
||||
llmProvider = this.defaultLLM,
|
||||
intensity = 1.0, // 0.0-2.0 intensité d'amélioration
|
||||
analysisMode = true, // Analyser avant d'appliquer
|
||||
csvData = null,
|
||||
preserveStructure = true,
|
||||
targetStyle = null // Style spécifique à appliquer
|
||||
} = config;
|
||||
|
||||
await tracer.annotate({
|
||||
styleLayer: true,
|
||||
llmProvider,
|
||||
intensity,
|
||||
elementsCount: Object.keys(content).length,
|
||||
personality: csvData?.personality?.nom
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🎨 STYLE LAYER: Amélioration personnalité (${llmProvider})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments | Style: ${csvData?.personality?.nom || 'standard'}`, 'INFO');
|
||||
|
||||
try {
|
||||
let enhancedContent = {};
|
||||
let elementsProcessed = 0;
|
||||
let elementsEnhanced = 0;
|
||||
|
||||
// Vérifier présence personnalité
|
||||
if (!csvData?.personality && !targetStyle) {
|
||||
logSh(`⚠️ STYLE LAYER: Pas de personnalité définie, style générique appliqué`, 'WARNING');
|
||||
}
|
||||
|
||||
if (analysisMode) {
|
||||
// 1. Analyser éléments nécessitant amélioration style
|
||||
const analysis = await this.analyzeStyleNeeds(content, csvData, targetStyle);
|
||||
|
||||
logSh(` 📋 Analyse: ${analysis.candidates.length}/${Object.keys(content).length} éléments candidats`, 'DEBUG');
|
||||
|
||||
if (analysis.candidates.length === 0) {
|
||||
logSh(`✅ STYLE LAYER: Style déjà cohérent`, 'INFO');
|
||||
return {
|
||||
content,
|
||||
stats: {
|
||||
processed: Object.keys(content).length,
|
||||
enhanced: 0,
|
||||
analysisSkipped: true,
|
||||
duration: Date.now() - startTime
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// 2. Améliorer les éléments sélectionnés
|
||||
const improvedResults = await this.enhanceStyleElements(
|
||||
analysis.candidates,
|
||||
csvData,
|
||||
{ llmProvider, intensity, preserveStructure, targetStyle }
|
||||
);
|
||||
|
||||
// 3. Merger avec contenu original
|
||||
enhancedContent = { ...content };
|
||||
Object.keys(improvedResults).forEach(tag => {
|
||||
if (improvedResults[tag] !== content[tag]) {
|
||||
enhancedContent[tag] = improvedResults[tag];
|
||||
elementsEnhanced++;
|
||||
}
|
||||
});
|
||||
|
||||
elementsProcessed = analysis.candidates.length;
|
||||
|
||||
} else {
|
||||
// Mode direct : améliorer tous les éléments textuels
|
||||
const textualElements = Object.entries(content)
|
||||
.filter(([tag, text]) => text.length > 50 && !tag.includes('FAQ_Question'))
|
||||
.map(([tag, text]) => ({ tag, content: text, styleIssues: ['adaptation_générale'] }));
|
||||
|
||||
if (textualElements.length === 0) {
|
||||
return { content, stats: { processed: 0, enhanced: 0, duration: Date.now() - startTime } };
|
||||
}
|
||||
|
||||
const improvedResults = await this.enhanceStyleElements(
|
||||
textualElements,
|
||||
csvData,
|
||||
{ llmProvider, intensity, preserveStructure, targetStyle }
|
||||
);
|
||||
|
||||
enhancedContent = { ...content };
|
||||
Object.keys(improvedResults).forEach(tag => {
|
||||
if (improvedResults[tag] !== content[tag]) {
|
||||
enhancedContent[tag] = improvedResults[tag];
|
||||
elementsEnhanced++;
|
||||
}
|
||||
});
|
||||
|
||||
elementsProcessed = textualElements.length;
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: elementsProcessed,
|
||||
enhanced: elementsEnhanced,
|
||||
total: Object.keys(content).length,
|
||||
enhancementRate: (elementsEnhanced / Math.max(elementsProcessed, 1)) * 100,
|
||||
duration,
|
||||
llmProvider,
|
||||
intensity,
|
||||
personalityApplied: csvData?.personality?.nom || targetStyle || 'générique'
|
||||
};
|
||||
|
||||
logSh(`✅ STYLE LAYER TERMINÉE: ${elementsEnhanced}/${elementsProcessed} stylisés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event('Style layer appliquée', stats);
|
||||
|
||||
return { content: enhancedContent, stats };
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ STYLE LAYER ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback gracieux : retourner contenu original
|
||||
logSh(`🔄 Fallback: style original préservé`, 'WARNING');
|
||||
return {
|
||||
content,
|
||||
stats: { fallback: true, duration },
|
||||
error: error.message
|
||||
};
|
||||
}
|
||||
}, { content: Object.keys(content), config });
|
||||
}
|
||||
|
||||
/**
|
||||
* ANALYSER BESOINS STYLE
|
||||
*/
|
||||
async analyzeStyleNeeds(content, csvData, targetStyle = null) {
|
||||
logSh(`🎨 Analyse besoins style`, 'DEBUG');
|
||||
|
||||
const analysis = {
|
||||
candidates: [],
|
||||
globalScore: 0,
|
||||
styleIssues: {
|
||||
genericLanguage: 0,
|
||||
personalityMismatch: 0,
|
||||
inconsistentTone: 0,
|
||||
missingVocabulary: 0
|
||||
}
|
||||
};
|
||||
|
||||
const personality = csvData?.personality;
|
||||
const expectedStyle = targetStyle || personality;
|
||||
|
||||
// Analyser chaque élément
|
||||
Object.entries(content).forEach(([tag, text]) => {
|
||||
const elementAnalysis = this.analyzeStyleElement(text, expectedStyle, csvData);
|
||||
|
||||
if (elementAnalysis.needsImprovement) {
|
||||
analysis.candidates.push({
|
||||
tag,
|
||||
content: text,
|
||||
styleIssues: elementAnalysis.issues,
|
||||
score: elementAnalysis.score,
|
||||
improvements: elementAnalysis.improvements
|
||||
});
|
||||
|
||||
analysis.globalScore += elementAnalysis.score;
|
||||
|
||||
// Compter types d'issues
|
||||
elementAnalysis.issues.forEach(issue => {
|
||||
if (analysis.styleIssues.hasOwnProperty(issue)) {
|
||||
analysis.styleIssues[issue]++;
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
analysis.globalScore = analysis.globalScore / Math.max(Object.keys(content).length, 1);
|
||||
|
||||
logSh(` 📊 Score global style: ${analysis.globalScore.toFixed(2)}`, 'DEBUG');
|
||||
logSh(` 🎭 Issues style: ${JSON.stringify(analysis.styleIssues)}`, 'DEBUG');
|
||||
|
||||
return analysis;
|
||||
}
|
||||
|
||||
/**
|
||||
* AMÉLIORER ÉLÉMENTS STYLE SÉLECTIONNÉS
|
||||
*/
|
||||
async enhanceStyleElements(candidates, csvData, config) {
|
||||
logSh(`🎨 Amélioration ${candidates.length} éléments style`, 'DEBUG');
|
||||
|
||||
const results = {};
|
||||
const chunks = chunkArray(candidates, 5); // Chunks optimisés pour Mistral
|
||||
|
||||
for (let chunkIndex = 0; chunkIndex < chunks.length; chunkIndex++) {
|
||||
const chunk = chunks[chunkIndex];
|
||||
|
||||
try {
|
||||
logSh(` 📦 Chunk style ${chunkIndex + 1}/${chunks.length}: ${chunk.length} éléments`, 'DEBUG');
|
||||
|
||||
const enhancementPrompt = this.createStyleEnhancementPrompt(chunk, csvData, config);
|
||||
|
||||
const response = await callLLM(config.llmProvider, enhancementPrompt, {
|
||||
temperature: 0.8, // Créativité élevée pour style
|
||||
maxTokens: 3000
|
||||
}, csvData?.personality);
|
||||
|
||||
const chunkResults = this.parseStyleResponse(response, chunk);
|
||||
Object.assign(results, chunkResults);
|
||||
|
||||
logSh(` ✅ Chunk style ${chunkIndex + 1}: ${Object.keys(chunkResults).length} stylisés`, 'DEBUG');
|
||||
|
||||
// Délai entre chunks
|
||||
if (chunkIndex < chunks.length - 1) {
|
||||
await sleep(1800);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Chunk style ${chunkIndex + 1} échoué: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: conserver contenu original
|
||||
chunk.forEach(element => {
|
||||
results[element.tag] = element.content;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
// ============= HELPER METHODS =============
|
||||
|
||||
/**
|
||||
* Analyser élément style individuel
|
||||
*/
|
||||
analyzeStyleElement(text, expectedStyle, csvData) {
|
||||
let score = 0;
|
||||
const issues = [];
|
||||
const improvements = [];
|
||||
|
||||
// Si pas de style attendu, score faible
|
||||
if (!expectedStyle) {
|
||||
return { needsImprovement: false, score: 0.1, issues: ['pas_style_défini'], improvements: [] };
|
||||
}
|
||||
|
||||
// 1. Analyser langage générique
|
||||
const genericScore = this.analyzeGenericLanguage(text);
|
||||
if (genericScore > 0.4) {
|
||||
score += 0.3;
|
||||
issues.push('genericLanguage');
|
||||
improvements.push('personnaliser_vocabulaire');
|
||||
}
|
||||
|
||||
// 2. Analyser adéquation personnalité
|
||||
if (expectedStyle.vocabulairePref) {
|
||||
const personalityScore = this.analyzePersonalityAlignment(text, expectedStyle);
|
||||
if (personalityScore < 0.3) {
|
||||
score += 0.4;
|
||||
issues.push('personalityMismatch');
|
||||
improvements.push('appliquer_style_personnalité');
|
||||
}
|
||||
}
|
||||
|
||||
// 3. Analyser cohérence de ton
|
||||
const toneScore = this.analyzeToneConsistency(text, expectedStyle);
|
||||
if (toneScore > 0.5) {
|
||||
score += 0.2;
|
||||
issues.push('inconsistentTone');
|
||||
improvements.push('unifier_ton');
|
||||
}
|
||||
|
||||
// 4. Analyser vocabulaire spécialisé
|
||||
if (expectedStyle.niveauTechnique) {
|
||||
const vocabScore = this.analyzeVocabularyLevel(text, expectedStyle);
|
||||
if (vocabScore > 0.4) {
|
||||
score += 0.1;
|
||||
issues.push('missingVocabulary');
|
||||
improvements.push('ajuster_niveau_vocabulaire');
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
needsImprovement: score > 0.3,
|
||||
score,
|
||||
issues,
|
||||
improvements
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser langage générique
|
||||
*/
|
||||
analyzeGenericLanguage(text) {
|
||||
const genericPhrases = [
|
||||
'nos solutions', 'notre expertise', 'notre savoir-faire',
|
||||
'nous vous proposons', 'nous mettons à votre disposition',
|
||||
'qualité optimale', 'service de qualité', 'expertise reconnue'
|
||||
];
|
||||
|
||||
let genericCount = 0;
|
||||
genericPhrases.forEach(phrase => {
|
||||
if (text.toLowerCase().includes(phrase)) genericCount++;
|
||||
});
|
||||
|
||||
const wordCount = text.split(/\s+/).length;
|
||||
return Math.min(1, (genericCount / Math.max(wordCount / 50, 1)));
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser alignement personnalité
|
||||
*/
|
||||
analyzePersonalityAlignment(text, personality) {
|
||||
if (!personality.vocabulairePref) return 1;
|
||||
|
||||
const preferredWords = personality.vocabulairePref.toLowerCase().split(',');
|
||||
const contentLower = text.toLowerCase();
|
||||
|
||||
let alignmentScore = 0;
|
||||
preferredWords.forEach(word => {
|
||||
if (word.trim() && contentLower.includes(word.trim())) {
|
||||
alignmentScore++;
|
||||
}
|
||||
});
|
||||
|
||||
return Math.min(1, alignmentScore / Math.max(preferredWords.length, 1));
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser cohérence de ton
|
||||
*/
|
||||
analyzeToneConsistency(text, expectedStyle) {
|
||||
const sentences = text.split(/[.!?]+/).filter(s => s.trim().length > 10);
|
||||
if (sentences.length < 2) return 0;
|
||||
|
||||
const tones = sentences.map(sentence => this.detectSentenceTone(sentence));
|
||||
const expectedTone = this.getExpectedTone(expectedStyle);
|
||||
|
||||
let inconsistencies = 0;
|
||||
tones.forEach(tone => {
|
||||
if (tone !== expectedTone && tone !== 'neutral') {
|
||||
inconsistencies++;
|
||||
}
|
||||
});
|
||||
|
||||
return inconsistencies / tones.length;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser niveau vocabulaire
|
||||
*/
|
||||
analyzeVocabularyLevel(text, expectedStyle) {
|
||||
const technicalWords = text.match(/\b\w{8,}\b/g) || [];
|
||||
const expectedLevel = expectedStyle.niveauTechnique || 'standard';
|
||||
|
||||
const techRatio = technicalWords.length / text.split(/\s+/).length;
|
||||
|
||||
switch (expectedLevel) {
|
||||
case 'accessible':
|
||||
return techRatio > 0.1 ? techRatio : 0; // Trop technique
|
||||
case 'expert':
|
||||
return techRatio < 0.05 ? 1 - techRatio : 0; // Pas assez technique
|
||||
default:
|
||||
return techRatio > 0.15 || techRatio < 0.02 ? Math.abs(0.08 - techRatio) : 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Détecter ton de phrase
|
||||
*/
|
||||
detectSentenceTone(sentence) {
|
||||
const lowerSentence = sentence.toLowerCase();
|
||||
|
||||
if (/\b(excellent|remarquable|exceptionnel|parfait)\b/.test(lowerSentence)) return 'enthusiastic';
|
||||
if (/\b(il convient|nous recommandons|il est conseillé)\b/.test(lowerSentence)) return 'formal';
|
||||
if (/\b(sympa|cool|nickel|top)\b/.test(lowerSentence)) return 'casual';
|
||||
if (/\b(technique|précision|spécification)\b/.test(lowerSentence)) return 'technical';
|
||||
|
||||
return 'neutral';
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir ton attendu selon personnalité
|
||||
*/
|
||||
getExpectedTone(personality) {
|
||||
if (!personality || !personality.style) return 'neutral';
|
||||
|
||||
const style = personality.style.toLowerCase();
|
||||
|
||||
if (style.includes('technique') || style.includes('expert')) return 'technical';
|
||||
if (style.includes('commercial') || style.includes('vente')) return 'enthusiastic';
|
||||
if (style.includes('décontracté') || style.includes('moderne')) return 'casual';
|
||||
if (style.includes('professionnel') || style.includes('formel')) return 'formal';
|
||||
|
||||
return 'neutral';
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt amélioration style
|
||||
*/
|
||||
createStyleEnhancementPrompt(chunk, csvData, config) {
|
||||
const personality = csvData?.personality || config.targetStyle;
|
||||
|
||||
let prompt = `MISSION: Adapte UNIQUEMENT le style et la personnalité de ces contenus.
|
||||
|
||||
CONTEXTE: Article SEO ${csvData?.mc0 || 'signalétique personnalisée'}
|
||||
${personality ? `PERSONNALITÉ CIBLE: ${personality.nom} (${personality.style})` : 'STYLE: Professionnel standard'}
|
||||
${personality?.description ? `DESCRIPTION: ${personality.description}` : ''}
|
||||
INTENSITÉ: ${config.intensity} (0.5=léger, 1.0=standard, 1.5=intensif)
|
||||
|
||||
CONTENUS À STYLISER:
|
||||
|
||||
${chunk.map((item, i) => `[${i + 1}] TAG: ${item.tag}
|
||||
PROBLÈMES: ${item.styleIssues.join(', ')}
|
||||
CONTENU: "${item.content}"`).join('\n\n')}
|
||||
|
||||
PROFIL PERSONNALITÉ ${personality?.nom || 'Standard'}:
|
||||
${personality ? `- Style: ${personality.style}
|
||||
- Niveau: ${personality.niveauTechnique || 'standard'}
|
||||
- Vocabulaire préféré: ${personality.vocabulairePref || 'professionnel'}
|
||||
- Connecteurs: ${personality.connecteursPref || 'variés'}
|
||||
${personality.specificites ? `- Spécificités: ${personality.specificites}` : ''}` : '- Style professionnel web standard'}
|
||||
|
||||
OBJECTIFS STYLE:
|
||||
- Appliquer personnalité ${personality?.nom || 'standard'} de façon naturelle
|
||||
- Utiliser vocabulaire et expressions caractéristiques
|
||||
- Maintenir cohérence de ton sur tout le contenu
|
||||
- Adapter niveau technique selon profil (${personality?.niveauTechnique || 'standard'})
|
||||
- Style web ${personality?.style || 'professionnel'} mais authentique
|
||||
|
||||
CONSIGNES STRICTES:
|
||||
- NE CHANGE PAS le fond du message ni les informations factuelles
|
||||
- GARDE même structure et longueur approximative (±15%)
|
||||
- Applique SEULEMENT style et personnalité sur la forme
|
||||
- RESPECTE impérativement le niveau ${personality?.niveauTechnique || 'standard'}
|
||||
- ÉVITE exagération qui rendrait artificiel
|
||||
|
||||
TECHNIQUES STYLE:
|
||||
${personality?.vocabulairePref ? `- Intégrer naturellement: ${personality.vocabulairePref}` : '- Vocabulaire professionnel équilibré'}
|
||||
- Adapter registre de langue selon ${personality?.style || 'professionnel'}
|
||||
- Expressions et tournures caractéristiques personnalité
|
||||
- Ton cohérent: ${this.getExpectedTone(personality)} mais naturel
|
||||
- Connecteurs préférés: ${personality?.connecteursPref || 'variés et naturels'}
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] Contenu avec style personnalisé
|
||||
[2] Contenu avec style personnalisé
|
||||
etc...
|
||||
|
||||
IMPORTANT: Réponse DIRECTE par les contenus stylisés, pas d'explication.`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse style
|
||||
*/
|
||||
parseStyleResponse(response, chunk) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\n\[\d+\]|$)/gs;
|
||||
let match;
|
||||
let index = 0;
|
||||
|
||||
while ((match = regex.exec(response)) && index < chunk.length) {
|
||||
let styledContent = match[2].trim();
|
||||
const element = chunk[index];
|
||||
|
||||
// Nettoyer contenu stylisé
|
||||
styledContent = this.cleanStyleContent(styledContent);
|
||||
|
||||
if (styledContent && styledContent.length > 10) {
|
||||
results[element.tag] = styledContent;
|
||||
logSh(`✅ Stylisé [${element.tag}]: "${styledContent.substring(0, 60)}..."`, 'DEBUG');
|
||||
} else {
|
||||
results[element.tag] = element.content; // Fallback
|
||||
logSh(`⚠️ Fallback style [${element.tag}]: amélioration invalide`, 'WARNING');
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
// Compléter les manquants
|
||||
while (index < chunk.length) {
|
||||
const element = chunk[index];
|
||||
results[element.tag] = element.content;
|
||||
index++;
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Nettoyer contenu style généré
|
||||
*/
|
||||
cleanStyleContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
// Supprimer préfixes indésirables
|
||||
content = content.replace(/^(voici\s+)?le\s+contenu\s+(stylisé|adapté|personnalisé)\s*[:.]?\s*/gi, '');
|
||||
content = content.replace(/^(avec\s+)?style\s+[^:]*\s*[:.]?\s*/gi, '');
|
||||
content = content.replace(/^(dans\s+le\s+style\s+de\s+)[^:]*[:.]?\s*/gi, '');
|
||||
|
||||
// Nettoyer formatage
|
||||
content = content.replace(/\*\*[^*]+\*\*/g, ''); // Gras markdown
|
||||
content = content.replace(/\s{2,}/g, ' '); // Espaces multiples
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { StyleLayer };
|
||||
441
lib/selective-enhancement/TechnicalLayer.js
Normal file
441
lib/selective-enhancement/TechnicalLayer.js
Normal file
@ -0,0 +1,441 @@
|
||||
// ========================================
|
||||
// TECHNICAL LAYER - COUCHE TECHNIQUE MODULAIRE
|
||||
// Responsabilité: Amélioration technique modulaire réutilisable
|
||||
// LLM: GPT-4o-mini (précision technique optimale)
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
const { chunkArray, sleep } = require('./SelectiveUtils');
|
||||
|
||||
/**
|
||||
* COUCHE TECHNIQUE MODULAIRE
|
||||
*/
|
||||
class TechnicalLayer {
|
||||
constructor() {
|
||||
this.name = 'TechnicalEnhancement';
|
||||
this.defaultLLM = 'gpt4';
|
||||
this.priority = 1; // Haute priorité - appliqué en premier généralement
|
||||
}
|
||||
|
||||
/**
|
||||
* MAIN METHOD - Appliquer amélioration technique
|
||||
*/
|
||||
async apply(content, config = {}) {
|
||||
return await tracer.run('TechnicalLayer.apply()', async () => {
|
||||
const {
|
||||
llmProvider = this.defaultLLM,
|
||||
intensity = 1.0, // 0.0-2.0 intensité d'amélioration
|
||||
analysisMode = true, // Analyser avant d'appliquer
|
||||
csvData = null,
|
||||
preserveStructure = true,
|
||||
targetTerms = null // Termes techniques ciblés
|
||||
} = config;
|
||||
|
||||
await tracer.annotate({
|
||||
technicalLayer: true,
|
||||
llmProvider,
|
||||
intensity,
|
||||
elementsCount: Object.keys(content).length,
|
||||
mc0: csvData?.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`⚙️ TECHNICAL LAYER: Amélioration technique (${llmProvider})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments | Intensité: ${intensity}`, 'INFO');
|
||||
|
||||
try {
|
||||
let enhancedContent = {};
|
||||
let elementsProcessed = 0;
|
||||
let elementsEnhanced = 0;
|
||||
|
||||
if (analysisMode) {
|
||||
// 1. Analyser éléments nécessitant amélioration technique
|
||||
const analysis = await this.analyzeTechnicalNeeds(content, csvData, targetTerms);
|
||||
|
||||
logSh(` 📋 Analyse: ${analysis.candidates.length}/${Object.keys(content).length} éléments candidats`, 'DEBUG');
|
||||
|
||||
if (analysis.candidates.length === 0) {
|
||||
logSh(`✅ TECHNICAL LAYER: Aucune amélioration nécessaire`, 'INFO');
|
||||
return {
|
||||
content,
|
||||
stats: {
|
||||
processed: Object.keys(content).length,
|
||||
enhanced: 0,
|
||||
analysisSkipped: true,
|
||||
duration: Date.now() - startTime
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// 2. Améliorer les éléments sélectionnés
|
||||
const improvedResults = await this.enhanceTechnicalElements(
|
||||
analysis.candidates,
|
||||
csvData,
|
||||
{ llmProvider, intensity, preserveStructure }
|
||||
);
|
||||
|
||||
// 3. Merger avec contenu original
|
||||
enhancedContent = { ...content };
|
||||
Object.keys(improvedResults).forEach(tag => {
|
||||
if (improvedResults[tag] !== content[tag]) {
|
||||
enhancedContent[tag] = improvedResults[tag];
|
||||
elementsEnhanced++;
|
||||
}
|
||||
});
|
||||
|
||||
elementsProcessed = analysis.candidates.length;
|
||||
|
||||
} else {
|
||||
// Mode direct : améliorer tous les éléments
|
||||
enhancedContent = await this.enhanceAllElementsDirect(
|
||||
content,
|
||||
csvData,
|
||||
{ llmProvider, intensity, preserveStructure }
|
||||
);
|
||||
|
||||
elementsProcessed = Object.keys(content).length;
|
||||
elementsEnhanced = this.countDifferences(content, enhancedContent);
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: elementsProcessed,
|
||||
enhanced: elementsEnhanced,
|
||||
total: Object.keys(content).length,
|
||||
enhancementRate: (elementsEnhanced / Math.max(elementsProcessed, 1)) * 100,
|
||||
duration,
|
||||
llmProvider,
|
||||
intensity
|
||||
};
|
||||
|
||||
logSh(`✅ TECHNICAL LAYER TERMINÉE: ${elementsEnhanced}/${elementsProcessed} améliorés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event('Technical layer appliquée', stats);
|
||||
|
||||
return { content: enhancedContent, stats };
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ TECHNICAL LAYER ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
throw error;
|
||||
}
|
||||
}, { content: Object.keys(content), config });
|
||||
}
|
||||
|
||||
/**
|
||||
* ANALYSER BESOINS TECHNIQUES
|
||||
*/
|
||||
async analyzeTechnicalNeeds(content, csvData, targetTerms = null) {
|
||||
logSh(`🔍 Analyse besoins techniques`, 'DEBUG');
|
||||
|
||||
const analysis = {
|
||||
candidates: [],
|
||||
technicalTermsFound: [],
|
||||
missingTerms: [],
|
||||
globalScore: 0
|
||||
};
|
||||
|
||||
// Définir termes techniques selon contexte
|
||||
const contextualTerms = this.getContextualTechnicalTerms(csvData?.mc0, targetTerms);
|
||||
|
||||
// Analyser chaque élément
|
||||
Object.entries(content).forEach(([tag, text]) => {
|
||||
const elementAnalysis = this.analyzeTechnicalElement(text, contextualTerms, csvData);
|
||||
|
||||
if (elementAnalysis.needsImprovement) {
|
||||
analysis.candidates.push({
|
||||
tag,
|
||||
content: text,
|
||||
technicalTerms: elementAnalysis.foundTerms,
|
||||
missingTerms: elementAnalysis.missingTerms,
|
||||
score: elementAnalysis.score,
|
||||
improvements: elementAnalysis.improvements
|
||||
});
|
||||
|
||||
analysis.globalScore += elementAnalysis.score;
|
||||
}
|
||||
|
||||
analysis.technicalTermsFound.push(...elementAnalysis.foundTerms);
|
||||
});
|
||||
|
||||
analysis.globalScore = analysis.globalScore / Math.max(Object.keys(content).length, 1);
|
||||
analysis.technicalTermsFound = [...new Set(analysis.technicalTermsFound)];
|
||||
|
||||
logSh(` 📊 Score global technique: ${analysis.globalScore.toFixed(2)}`, 'DEBUG');
|
||||
|
||||
return analysis;
|
||||
}
|
||||
|
||||
/**
|
||||
* AMÉLIORER ÉLÉMENTS TECHNIQUES SÉLECTIONNÉS
|
||||
*/
|
||||
async enhanceTechnicalElements(candidates, csvData, config) {
|
||||
logSh(`🛠️ Amélioration ${candidates.length} éléments techniques`, 'DEBUG');
|
||||
|
||||
const results = {};
|
||||
const chunks = chunkArray(candidates, 4); // Chunks de 4 pour GPT-4
|
||||
|
||||
for (let chunkIndex = 0; chunkIndex < chunks.length; chunkIndex++) {
|
||||
const chunk = chunks[chunkIndex];
|
||||
|
||||
try {
|
||||
logSh(` 📦 Chunk technique ${chunkIndex + 1}/${chunks.length}: ${chunk.length} éléments`, 'DEBUG');
|
||||
|
||||
const enhancementPrompt = this.createTechnicalEnhancementPrompt(chunk, csvData, config);
|
||||
|
||||
const response = await callLLM(config.llmProvider, enhancementPrompt, {
|
||||
temperature: 0.4, // Précision technique
|
||||
maxTokens: 3000
|
||||
}, csvData?.personality);
|
||||
|
||||
const chunkResults = this.parseTechnicalResponse(response, chunk);
|
||||
Object.assign(results, chunkResults);
|
||||
|
||||
logSh(` ✅ Chunk technique ${chunkIndex + 1}: ${Object.keys(chunkResults).length} améliorés`, 'DEBUG');
|
||||
|
||||
// Délai entre chunks
|
||||
if (chunkIndex < chunks.length - 1) {
|
||||
await sleep(1500);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Chunk technique ${chunkIndex + 1} échoué: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: conserver contenu original
|
||||
chunk.forEach(element => {
|
||||
results[element.tag] = element.content;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* AMÉLIORER TOUS ÉLÉMENTS MODE DIRECT
|
||||
*/
|
||||
async enhanceAllElementsDirect(content, csvData, config) {
|
||||
const allElements = Object.entries(content).map(([tag, text]) => ({
|
||||
tag,
|
||||
content: text,
|
||||
technicalTerms: [],
|
||||
improvements: ['amélioration_générale_technique']
|
||||
}));
|
||||
|
||||
return await this.enhanceTechnicalElements(allElements, csvData, config);
|
||||
}
|
||||
|
||||
// ============= HELPER METHODS =============
|
||||
|
||||
/**
|
||||
* Analyser élément technique individuel
|
||||
*/
|
||||
analyzeTechnicalElement(text, contextualTerms, csvData) {
|
||||
let score = 0;
|
||||
const foundTerms = [];
|
||||
const missingTerms = [];
|
||||
const improvements = [];
|
||||
|
||||
// 1. Détecter termes techniques présents
|
||||
contextualTerms.forEach(term => {
|
||||
if (text.toLowerCase().includes(term.toLowerCase())) {
|
||||
foundTerms.push(term);
|
||||
} else if (text.length > 100) { // Seulement pour textes longs
|
||||
missingTerms.push(term);
|
||||
}
|
||||
});
|
||||
|
||||
// 2. Évaluer manque de précision technique
|
||||
if (foundTerms.length === 0 && text.length > 80) {
|
||||
score += 0.4;
|
||||
improvements.push('ajout_termes_techniques');
|
||||
}
|
||||
|
||||
// 3. Détecter vocabulaire trop générique
|
||||
const genericWords = ['produit', 'solution', 'service', 'offre', 'article'];
|
||||
const genericCount = genericWords.filter(word =>
|
||||
text.toLowerCase().includes(word)
|
||||
).length;
|
||||
|
||||
if (genericCount > 1) {
|
||||
score += 0.3;
|
||||
improvements.push('spécialisation_vocabulaire');
|
||||
}
|
||||
|
||||
// 4. Manque de données techniques (dimensions, etc.)
|
||||
if (text.length > 50 && !(/\d+\s*(mm|cm|m|%|°|kg|g)/.test(text))) {
|
||||
score += 0.2;
|
||||
improvements.push('ajout_données_techniques');
|
||||
}
|
||||
|
||||
// 5. Contexte métier spécifique
|
||||
if (csvData?.mc0 && !text.toLowerCase().includes(csvData.mc0.toLowerCase().split(' ')[0])) {
|
||||
score += 0.1;
|
||||
improvements.push('intégration_contexte_métier');
|
||||
}
|
||||
|
||||
return {
|
||||
needsImprovement: score > 0.3,
|
||||
score,
|
||||
foundTerms,
|
||||
missingTerms: missingTerms.slice(0, 3), // Limiter à 3 termes manquants
|
||||
improvements
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtenir termes techniques contextuels
|
||||
*/
|
||||
getContextualTechnicalTerms(mc0, targetTerms) {
|
||||
// Termes de base signalétique
|
||||
const baseTerms = [
|
||||
'dibond', 'aluminium', 'PMMA', 'acrylique', 'plexiglas',
|
||||
'impression', 'gravure', 'découpe', 'fraisage', 'perçage',
|
||||
'adhésif', 'fixation', 'visserie', 'support'
|
||||
];
|
||||
|
||||
// Termes spécifiques selon contexte
|
||||
const contextualTerms = [];
|
||||
|
||||
if (mc0) {
|
||||
const mc0Lower = mc0.toLowerCase();
|
||||
|
||||
if (mc0Lower.includes('plaque')) {
|
||||
contextualTerms.push('épaisseur 3mm', 'format standard', 'finition brossée', 'anodisation');
|
||||
}
|
||||
|
||||
if (mc0Lower.includes('signalétique')) {
|
||||
contextualTerms.push('norme ISO', 'pictogramme', 'contraste visuel', 'lisibilité');
|
||||
}
|
||||
|
||||
if (mc0Lower.includes('personnalisée')) {
|
||||
contextualTerms.push('découpe forme', 'impression numérique', 'quadrichromie', 'pantone');
|
||||
}
|
||||
}
|
||||
|
||||
// Ajouter termes ciblés si fournis
|
||||
if (targetTerms && Array.isArray(targetTerms)) {
|
||||
contextualTerms.push(...targetTerms);
|
||||
}
|
||||
|
||||
return [...baseTerms, ...contextualTerms];
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt amélioration technique
|
||||
*/
|
||||
createTechnicalEnhancementPrompt(chunk, csvData, config) {
|
||||
const personality = csvData?.personality;
|
||||
|
||||
let prompt = `MISSION: Améliore UNIQUEMENT la précision technique de ces contenus.
|
||||
|
||||
CONTEXTE: ${csvData?.mc0 || 'Signalétique personnalisée'} - Secteur: impression/signalétique
|
||||
${personality ? `PERSONNALITÉ: ${personality.nom} (${personality.style})` : ''}
|
||||
INTENSITÉ: ${config.intensity} (0.5=léger, 1.0=standard, 1.5=intensif)
|
||||
|
||||
ÉLÉMENTS À AMÉLIORER TECHNIQUEMENT:
|
||||
|
||||
${chunk.map((item, i) => `[${i + 1}] TAG: ${item.tag}
|
||||
CONTENU: "${item.content}"
|
||||
AMÉLIORATIONS: ${item.improvements.join(', ')}
|
||||
${item.missingTerms.length > 0 ? `TERMES À INTÉGRER: ${item.missingTerms.join(', ')}` : ''}`).join('\n\n')}
|
||||
|
||||
CONSIGNES TECHNIQUES:
|
||||
- GARDE exactement le même message et ton${personality ? ` ${personality.style}` : ''}
|
||||
- AJOUTE précision technique naturelle et vocabulaire spécialisé
|
||||
- INTÈGRE termes métier : matériaux, procédés, normes, dimensions
|
||||
- REMPLACE vocabulaire générique par termes techniques appropriés
|
||||
- ÉVITE jargon incompréhensible, reste accessible
|
||||
- PRESERVE longueur approximative (±15%)
|
||||
|
||||
VOCABULAIRE TECHNIQUE RECOMMANDÉ:
|
||||
- Matériaux: dibond, aluminium anodisé, PMMA coulé, PVC expansé
|
||||
- Procédés: impression UV, gravure laser, découpe numérique, fraisage CNC
|
||||
- Finitions: brossé, poli, texturé, laqué
|
||||
- Fixations: perçage, adhésif double face, vis inox, plots de fixation
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] Contenu avec amélioration technique précise
|
||||
[2] Contenu avec amélioration technique précise
|
||||
etc...
|
||||
|
||||
IMPORTANT: Réponse DIRECTE par les contenus améliorés, pas d'explication.`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse technique
|
||||
*/
|
||||
parseTechnicalResponse(response, chunk) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\n\[\d+\]|$)/gs;
|
||||
let match;
|
||||
let index = 0;
|
||||
|
||||
while ((match = regex.exec(response)) && index < chunk.length) {
|
||||
let technicalContent = match[2].trim();
|
||||
const element = chunk[index];
|
||||
|
||||
// Nettoyer contenu technique
|
||||
technicalContent = this.cleanTechnicalContent(technicalContent);
|
||||
|
||||
if (technicalContent && technicalContent.length > 10) {
|
||||
results[element.tag] = technicalContent;
|
||||
logSh(`✅ Amélioré technique [${element.tag}]: "${technicalContent.substring(0, 60)}..."`, 'DEBUG');
|
||||
} else {
|
||||
results[element.tag] = element.content; // Fallback
|
||||
logSh(`⚠️ Fallback technique [${element.tag}]: amélioration invalide`, 'WARNING');
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
// Compléter les manquants
|
||||
while (index < chunk.length) {
|
||||
const element = chunk[index];
|
||||
results[element.tag] = element.content;
|
||||
index++;
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Nettoyer contenu technique généré
|
||||
*/
|
||||
cleanTechnicalContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
// Supprimer préfixes indésirables
|
||||
content = content.replace(/^(voici\s+)?le\s+contenu\s+amélioré\s*[:.]?\s*/gi, '');
|
||||
content = content.replace(/^(avec\s+)?amélioration\s+technique\s*[:.]?\s*/gi, '');
|
||||
content = content.replace(/^(bon,?\s*)?(alors,?\s*)?pour\s+/gi, '');
|
||||
|
||||
// Nettoyer formatage
|
||||
content = content.replace(/\*\*[^*]+\*\*/g, ''); // Gras markdown
|
||||
content = content.replace(/\s{2,}/g, ' '); // Espaces multiples
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compter différences entre contenus
|
||||
*/
|
||||
countDifferences(original, enhanced) {
|
||||
let count = 0;
|
||||
|
||||
Object.keys(original).forEach(tag => {
|
||||
if (enhanced[tag] && enhanced[tag] !== original[tag]) {
|
||||
count++;
|
||||
}
|
||||
});
|
||||
|
||||
return count;
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { TechnicalLayer };
|
||||
495
lib/selective-enhancement/TransitionLayer.js
Normal file
495
lib/selective-enhancement/TransitionLayer.js
Normal file
@ -0,0 +1,495 @@
|
||||
// ========================================
|
||||
// TRANSITION LAYER - COUCHE TRANSITIONS MODULAIRE
|
||||
// Responsabilité: Amélioration fluidité modulaire réutilisable
|
||||
// LLM: Gemini (fluidité linguistique optimale)
|
||||
// ========================================
|
||||
|
||||
const { callLLM } = require('../LLMManager');
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
const { tracer } = require('../trace');
|
||||
const { chunkArray, sleep } = require('./SelectiveUtils');
|
||||
|
||||
/**
|
||||
* COUCHE TRANSITIONS MODULAIRE
|
||||
*/
|
||||
class TransitionLayer {
|
||||
constructor() {
|
||||
this.name = 'TransitionEnhancement';
|
||||
this.defaultLLM = 'gemini';
|
||||
this.priority = 2; // Priorité moyenne - appliqué après technique
|
||||
}
|
||||
|
||||
/**
|
||||
* MAIN METHOD - Appliquer amélioration transitions
|
||||
*/
|
||||
async apply(content, config = {}) {
|
||||
return await tracer.run('TransitionLayer.apply()', async () => {
|
||||
const {
|
||||
llmProvider = this.defaultLLM,
|
||||
intensity = 1.0, // 0.0-2.0 intensité d'amélioration
|
||||
analysisMode = true, // Analyser avant d'appliquer
|
||||
csvData = null,
|
||||
preserveStructure = true,
|
||||
targetIssues = null // Issues spécifiques à corriger
|
||||
} = config;
|
||||
|
||||
await tracer.annotate({
|
||||
transitionLayer: true,
|
||||
llmProvider,
|
||||
intensity,
|
||||
elementsCount: Object.keys(content).length,
|
||||
mc0: csvData?.mc0
|
||||
});
|
||||
|
||||
const startTime = Date.now();
|
||||
logSh(`🔗 TRANSITION LAYER: Amélioration fluidité (${llmProvider})`, 'INFO');
|
||||
logSh(` 📊 ${Object.keys(content).length} éléments | Intensité: ${intensity}`, 'INFO');
|
||||
|
||||
try {
|
||||
let enhancedContent = {};
|
||||
let elementsProcessed = 0;
|
||||
let elementsEnhanced = 0;
|
||||
|
||||
if (analysisMode) {
|
||||
// 1. Analyser éléments nécessitant amélioration transitions
|
||||
const analysis = await this.analyzeTransitionNeeds(content, csvData, targetIssues);
|
||||
|
||||
logSh(` 📋 Analyse: ${analysis.candidates.length}/${Object.keys(content).length} éléments candidats`, 'DEBUG');
|
||||
|
||||
if (analysis.candidates.length === 0) {
|
||||
logSh(`✅ TRANSITION LAYER: Fluidité déjà optimale`, 'INFO');
|
||||
return {
|
||||
content,
|
||||
stats: {
|
||||
processed: Object.keys(content).length,
|
||||
enhanced: 0,
|
||||
analysisSkipped: true,
|
||||
duration: Date.now() - startTime
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// 2. Améliorer les éléments sélectionnés
|
||||
const improvedResults = await this.enhanceTransitionElements(
|
||||
analysis.candidates,
|
||||
csvData,
|
||||
{ llmProvider, intensity, preserveStructure }
|
||||
);
|
||||
|
||||
// 3. Merger avec contenu original
|
||||
enhancedContent = { ...content };
|
||||
Object.keys(improvedResults).forEach(tag => {
|
||||
if (improvedResults[tag] !== content[tag]) {
|
||||
enhancedContent[tag] = improvedResults[tag];
|
||||
elementsEnhanced++;
|
||||
}
|
||||
});
|
||||
|
||||
elementsProcessed = analysis.candidates.length;
|
||||
|
||||
} else {
|
||||
// Mode direct : améliorer tous les éléments longs
|
||||
const longElements = Object.entries(content)
|
||||
.filter(([tag, text]) => text.length > 150)
|
||||
.map(([tag, text]) => ({ tag, content: text, issues: ['amélioration_générale'] }));
|
||||
|
||||
if (longElements.length === 0) {
|
||||
return { content, stats: { processed: 0, enhanced: 0, duration: Date.now() - startTime } };
|
||||
}
|
||||
|
||||
const improvedResults = await this.enhanceTransitionElements(
|
||||
longElements,
|
||||
csvData,
|
||||
{ llmProvider, intensity, preserveStructure }
|
||||
);
|
||||
|
||||
enhancedContent = { ...content };
|
||||
Object.keys(improvedResults).forEach(tag => {
|
||||
if (improvedResults[tag] !== content[tag]) {
|
||||
enhancedContent[tag] = improvedResults[tag];
|
||||
elementsEnhanced++;
|
||||
}
|
||||
});
|
||||
|
||||
elementsProcessed = longElements.length;
|
||||
}
|
||||
|
||||
const duration = Date.now() - startTime;
|
||||
const stats = {
|
||||
processed: elementsProcessed,
|
||||
enhanced: elementsEnhanced,
|
||||
total: Object.keys(content).length,
|
||||
enhancementRate: (elementsEnhanced / Math.max(elementsProcessed, 1)) * 100,
|
||||
duration,
|
||||
llmProvider,
|
||||
intensity
|
||||
};
|
||||
|
||||
logSh(`✅ TRANSITION LAYER TERMINÉE: ${elementsEnhanced}/${elementsProcessed} fluidifiés (${duration}ms)`, 'INFO');
|
||||
|
||||
await tracer.event('Transition layer appliquée', stats);
|
||||
|
||||
return { content: enhancedContent, stats };
|
||||
|
||||
} catch (error) {
|
||||
const duration = Date.now() - startTime;
|
||||
logSh(`❌ TRANSITION LAYER ÉCHOUÉE après ${duration}ms: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback gracieux : retourner contenu original
|
||||
logSh(`🔄 Fallback: contenu original préservé`, 'WARNING');
|
||||
return {
|
||||
content,
|
||||
stats: { fallback: true, duration },
|
||||
error: error.message
|
||||
};
|
||||
}
|
||||
}, { content: Object.keys(content), config });
|
||||
}
|
||||
|
||||
/**
|
||||
* ANALYSER BESOINS TRANSITIONS
|
||||
*/
|
||||
async analyzeTransitionNeeds(content, csvData, targetIssues = null) {
|
||||
logSh(`🔍 Analyse besoins transitions`, 'DEBUG');
|
||||
|
||||
const analysis = {
|
||||
candidates: [],
|
||||
globalScore: 0,
|
||||
issuesFound: {
|
||||
repetitiveConnectors: 0,
|
||||
abruptTransitions: 0,
|
||||
uniformSentences: 0,
|
||||
formalityImbalance: 0
|
||||
}
|
||||
};
|
||||
|
||||
// Analyser chaque élément
|
||||
Object.entries(content).forEach(([tag, text]) => {
|
||||
const elementAnalysis = this.analyzeTransitionElement(text, csvData);
|
||||
|
||||
if (elementAnalysis.needsImprovement) {
|
||||
analysis.candidates.push({
|
||||
tag,
|
||||
content: text,
|
||||
issues: elementAnalysis.issues,
|
||||
score: elementAnalysis.score,
|
||||
improvements: elementAnalysis.improvements
|
||||
});
|
||||
|
||||
analysis.globalScore += elementAnalysis.score;
|
||||
|
||||
// Compter types d'issues
|
||||
elementAnalysis.issues.forEach(issue => {
|
||||
if (analysis.issuesFound.hasOwnProperty(issue)) {
|
||||
analysis.issuesFound[issue]++;
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
analysis.globalScore = analysis.globalScore / Math.max(Object.keys(content).length, 1);
|
||||
|
||||
logSh(` 📊 Score global transitions: ${analysis.globalScore.toFixed(2)}`, 'DEBUG');
|
||||
logSh(` 🔍 Issues trouvées: ${JSON.stringify(analysis.issuesFound)}`, 'DEBUG');
|
||||
|
||||
return analysis;
|
||||
}
|
||||
|
||||
/**
|
||||
* AMÉLIORER ÉLÉMENTS TRANSITIONS SÉLECTIONNÉS
|
||||
*/
|
||||
async enhanceTransitionElements(candidates, csvData, config) {
|
||||
logSh(`🔄 Amélioration ${candidates.length} éléments transitions`, 'DEBUG');
|
||||
|
||||
const results = {};
|
||||
const chunks = chunkArray(candidates, 6); // Chunks plus petits pour Gemini
|
||||
|
||||
for (let chunkIndex = 0; chunkIndex < chunks.length; chunkIndex++) {
|
||||
const chunk = chunks[chunkIndex];
|
||||
|
||||
try {
|
||||
logSh(` 📦 Chunk transitions ${chunkIndex + 1}/${chunks.length}: ${chunk.length} éléments`, 'DEBUG');
|
||||
|
||||
const enhancementPrompt = this.createTransitionEnhancementPrompt(chunk, csvData, config);
|
||||
|
||||
const response = await callLLM(config.llmProvider, enhancementPrompt, {
|
||||
temperature: 0.6, // Créativité modérée pour fluidité
|
||||
maxTokens: 2500
|
||||
}, csvData?.personality);
|
||||
|
||||
const chunkResults = this.parseTransitionResponse(response, chunk);
|
||||
Object.assign(results, chunkResults);
|
||||
|
||||
logSh(` ✅ Chunk transitions ${chunkIndex + 1}: ${Object.keys(chunkResults).length} fluidifiés`, 'DEBUG');
|
||||
|
||||
// Délai entre chunks
|
||||
if (chunkIndex < chunks.length - 1) {
|
||||
await sleep(1500);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
logSh(` ❌ Chunk transitions ${chunkIndex + 1} échoué: ${error.message}`, 'ERROR');
|
||||
|
||||
// Fallback: conserver contenu original
|
||||
chunk.forEach(element => {
|
||||
results[element.tag] = element.content;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
// ============= HELPER METHODS =============
|
||||
|
||||
/**
|
||||
* Analyser élément transition individuel
|
||||
*/
|
||||
analyzeTransitionElement(text, csvData) {
|
||||
const sentences = text.split(/[.!?]+/).filter(s => s.trim().length > 10);
|
||||
|
||||
if (sentences.length < 2) {
|
||||
return { needsImprovement: false, score: 0, issues: [], improvements: [] };
|
||||
}
|
||||
|
||||
let score = 0;
|
||||
const issues = [];
|
||||
const improvements = [];
|
||||
|
||||
// 1. Analyser connecteurs répétitifs
|
||||
const repetitiveScore = this.analyzeRepetitiveConnectors(text);
|
||||
if (repetitiveScore > 0.3) {
|
||||
score += 0.3;
|
||||
issues.push('repetitiveConnectors');
|
||||
improvements.push('varier_connecteurs');
|
||||
}
|
||||
|
||||
// 2. Analyser transitions abruptes
|
||||
const abruptScore = this.analyzeAbruptTransitions(sentences);
|
||||
if (abruptScore > 0.4) {
|
||||
score += 0.4;
|
||||
issues.push('abruptTransitions');
|
||||
improvements.push('ajouter_transitions_fluides');
|
||||
}
|
||||
|
||||
// 3. Analyser uniformité des phrases
|
||||
const uniformityScore = this.analyzeSentenceUniformity(sentences);
|
||||
if (uniformityScore < 0.3) {
|
||||
score += 0.2;
|
||||
issues.push('uniformSentences');
|
||||
improvements.push('varier_longueurs_phrases');
|
||||
}
|
||||
|
||||
// 4. Analyser équilibre formalité
|
||||
const formalityScore = this.analyzeFormalityBalance(text);
|
||||
if (formalityScore > 0.5) {
|
||||
score += 0.1;
|
||||
issues.push('formalityImbalance');
|
||||
improvements.push('équilibrer_registre_langue');
|
||||
}
|
||||
|
||||
return {
|
||||
needsImprovement: score > 0.3,
|
||||
score,
|
||||
issues,
|
||||
improvements
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser connecteurs répétitifs
|
||||
*/
|
||||
analyzeRepetitiveConnectors(text) {
|
||||
const commonConnectors = ['par ailleurs', 'en effet', 'de plus', 'cependant', 'ainsi', 'donc'];
|
||||
let totalConnectors = 0;
|
||||
let repetitions = 0;
|
||||
|
||||
commonConnectors.forEach(connector => {
|
||||
const matches = (text.match(new RegExp(`\\b${connector}\\b`, 'gi')) || []);
|
||||
totalConnectors += matches.length;
|
||||
if (matches.length > 1) repetitions += matches.length - 1;
|
||||
});
|
||||
|
||||
return totalConnectors > 0 ? repetitions / totalConnectors : 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser transitions abruptes
|
||||
*/
|
||||
analyzeAbruptTransitions(sentences) {
|
||||
if (sentences.length < 2) return 0;
|
||||
|
||||
let abruptCount = 0;
|
||||
|
||||
for (let i = 1; i < sentences.length; i++) {
|
||||
const current = sentences[i].trim().toLowerCase();
|
||||
const hasConnector = this.hasTransitionWord(current);
|
||||
|
||||
if (!hasConnector && current.length > 30) {
|
||||
abruptCount++;
|
||||
}
|
||||
}
|
||||
|
||||
return abruptCount / (sentences.length - 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser uniformité des phrases
|
||||
*/
|
||||
analyzeSentenceUniformity(sentences) {
|
||||
if (sentences.length < 2) return 1;
|
||||
|
||||
const lengths = sentences.map(s => s.trim().length);
|
||||
const avgLength = lengths.reduce((a, b) => a + b, 0) / lengths.length;
|
||||
const variance = lengths.reduce((acc, len) => acc + Math.pow(len - avgLength, 2), 0) / lengths.length;
|
||||
const stdDev = Math.sqrt(variance);
|
||||
|
||||
return Math.min(1, stdDev / avgLength);
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyser équilibre formalité
|
||||
*/
|
||||
analyzeFormalityBalance(text) {
|
||||
const formalIndicators = ['il convient de', 'par conséquent', 'néanmoins', 'toutefois', 'cependant'];
|
||||
const casualIndicators = ['du coup', 'bon', 'franchement', 'nickel', 'sympa'];
|
||||
|
||||
let formalCount = 0;
|
||||
let casualCount = 0;
|
||||
|
||||
formalIndicators.forEach(indicator => {
|
||||
if (text.toLowerCase().includes(indicator)) formalCount++;
|
||||
});
|
||||
|
||||
casualIndicators.forEach(indicator => {
|
||||
if (text.toLowerCase().includes(indicator)) casualCount++;
|
||||
});
|
||||
|
||||
const total = formalCount + casualCount;
|
||||
if (total === 0) return 0;
|
||||
|
||||
// Déséquilibre si trop d'un côté
|
||||
return Math.abs(formalCount - casualCount) / total;
|
||||
}
|
||||
|
||||
/**
|
||||
* Vérifier présence mots de transition
|
||||
*/
|
||||
hasTransitionWord(sentence) {
|
||||
const transitionWords = [
|
||||
'par ailleurs', 'en effet', 'de plus', 'cependant', 'ainsi', 'donc',
|
||||
'ensuite', 'puis', 'également', 'aussi', 'néanmoins', 'toutefois',
|
||||
'd\'ailleurs', 'en outre', 'par contre', 'en revanche'
|
||||
];
|
||||
|
||||
return transitionWords.some(word => sentence.includes(word));
|
||||
}
|
||||
|
||||
/**
|
||||
* Créer prompt amélioration transitions
|
||||
*/
|
||||
createTransitionEnhancementPrompt(chunk, csvData, config) {
|
||||
const personality = csvData?.personality;
|
||||
|
||||
let prompt = `MISSION: Améliore UNIQUEMENT les transitions et fluidité de ces contenus.
|
||||
|
||||
CONTEXTE: Article SEO ${csvData?.mc0 || 'signalétique personnalisée'}
|
||||
${personality ? `PERSONNALITÉ: ${personality.nom} (${personality.style} web professionnel)` : ''}
|
||||
${personality?.connecteursPref ? `CONNECTEURS PRÉFÉRÉS: ${personality.connecteursPref}` : ''}
|
||||
INTENSITÉ: ${config.intensity} (0.5=léger, 1.0=standard, 1.5=intensif)
|
||||
|
||||
CONTENUS À FLUIDIFIER:
|
||||
|
||||
${chunk.map((item, i) => `[${i + 1}] TAG: ${item.tag}
|
||||
PROBLÈMES: ${item.issues.join(', ')}
|
||||
CONTENU: "${item.content}"`).join('\n\n')}
|
||||
|
||||
OBJECTIFS FLUIDITÉ:
|
||||
- Connecteurs plus naturels et variés${personality?.connecteursPref ? `: ${personality.connecteursPref}` : ''}
|
||||
- Transitions fluides entre idées et paragraphes
|
||||
- Variation naturelle longueurs phrases
|
||||
- ÉVITE répétitions excessives ("du coup", "par ailleurs", "en effet")
|
||||
- Style ${personality?.style || 'professionnel'} mais naturel web
|
||||
|
||||
CONSIGNES STRICTES:
|
||||
- NE CHANGE PAS le fond du message ni les informations
|
||||
- GARDE même structure générale et longueur approximative (±20%)
|
||||
- Améliore SEULEMENT la fluidité et les enchaînements
|
||||
- RESPECTE le style ${personality?.nom || 'professionnel'}${personality?.style ? ` (${personality.style})` : ''}
|
||||
- ÉVITE sur-correction qui rendrait artificiel
|
||||
|
||||
TECHNIQUES FLUIDITÉ:
|
||||
- Varier connecteurs logiques sans répétition
|
||||
- Alterner phrases courtes (8-12 mots) et moyennes (15-20 mots)
|
||||
- Utiliser pronoms et reprises pour cohésion
|
||||
- Ajouter transitions implicites par reformulation
|
||||
- Équilibrer registre soutenu/accessible
|
||||
|
||||
FORMAT RÉPONSE:
|
||||
[1] Contenu avec transitions améliorées
|
||||
[2] Contenu avec transitions améliorées
|
||||
etc...
|
||||
|
||||
IMPORTANT: Réponse DIRECTE par les contenus fluidifiés, pas d'explication.`;
|
||||
|
||||
return prompt;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parser réponse transitions
|
||||
*/
|
||||
parseTransitionResponse(response, chunk) {
|
||||
const results = {};
|
||||
const regex = /\[(\d+)\]\s*([^[]*?)(?=\n\[\d+\]|$)/gs;
|
||||
let match;
|
||||
let index = 0;
|
||||
|
||||
while ((match = regex.exec(response)) && index < chunk.length) {
|
||||
let fluidContent = match[2].trim();
|
||||
const element = chunk[index];
|
||||
|
||||
// Nettoyer contenu fluidifié
|
||||
fluidContent = this.cleanTransitionContent(fluidContent);
|
||||
|
||||
if (fluidContent && fluidContent.length > 10) {
|
||||
results[element.tag] = fluidContent;
|
||||
logSh(`✅ Fluidifié [${element.tag}]: "${fluidContent.substring(0, 60)}..."`, 'DEBUG');
|
||||
} else {
|
||||
results[element.tag] = element.content; // Fallback
|
||||
logSh(`⚠️ Fallback transitions [${element.tag}]: amélioration invalide`, 'WARNING');
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
// Compléter les manquants
|
||||
while (index < chunk.length) {
|
||||
const element = chunk[index];
|
||||
results[element.tag] = element.content;
|
||||
index++;
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Nettoyer contenu transitions généré
|
||||
*/
|
||||
cleanTransitionContent(content) {
|
||||
if (!content) return content;
|
||||
|
||||
// Supprimer préfixes indésirables
|
||||
content = content.replace(/^(voici\s+)?le\s+contenu\s+(fluidifié|amélioré)\s*[:.]?\s*/gi, '');
|
||||
content = content.replace(/^(avec\s+)?transitions\s+améliorées\s*[:.]?\s*/gi, '');
|
||||
content = content.replace(/^(bon,?\s*)?(alors,?\s*)?/, '');
|
||||
|
||||
// Nettoyer formatage
|
||||
content = content.replace(/\*\*[^*]+\*\*/g, ''); // Gras markdown
|
||||
content = content.replace(/\s{2,}/g, ' '); // Espaces multiples
|
||||
content = content.trim();
|
||||
|
||||
return content;
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = { TransitionLayer };
|
||||
349
lib/selective-enhancement/demo-modulaire.js
Normal file
349
lib/selective-enhancement/demo-modulaire.js
Normal file
@ -0,0 +1,349 @@
|
||||
// ========================================
|
||||
// DÉMONSTRATION ARCHITECTURE MODULAIRE SELECTIVE
|
||||
// Usage: node lib/selective-enhancement/demo-modulaire.js
|
||||
// Objectif: Valider l'intégration modulaire selective enhancement
|
||||
// ========================================
|
||||
|
||||
const { logSh } = require('../ErrorReporting');
|
||||
|
||||
// Import modules selective modulaires
|
||||
const { applySelectiveLayer } = require('./SelectiveCore');
|
||||
const {
|
||||
applyPredefinedStack,
|
||||
applyAdaptiveLayers,
|
||||
getAvailableStacks
|
||||
} = require('./SelectiveLayers');
|
||||
const {
|
||||
analyzeTechnicalQuality,
|
||||
analyzeTransitionFluidity,
|
||||
analyzeStyleConsistency,
|
||||
generateImprovementReport
|
||||
} = require('./SelectiveUtils');
|
||||
|
||||
/**
|
||||
* EXEMPLE D'UTILISATION MODULAIRE SELECTIVE
|
||||
*/
|
||||
async function demoModularSelective() {
|
||||
console.log('\n🔧 === DÉMONSTRATION SELECTIVE MODULAIRE ===\n');
|
||||
|
||||
// Contenu d'exemple avec problèmes de qualité
|
||||
const exempleContenu = {
|
||||
'|Titre_Principal_1|': 'Guide complet pour choisir votre plaque personnalisée',
|
||||
'|Introduction_1|': 'La personnalisation d\'une plaque signalétique représente un enjeu important pour votre entreprise. Cette solution permet de créer une identité visuelle.',
|
||||
'|Texte_1|': 'Il est important de noter que les matériaux utilisés sont de qualité. Par ailleurs, la qualité est bonne. En effet, nos solutions sont bonnes et robustes. Par ailleurs, cela fonctionne bien.',
|
||||
'|FAQ_Question_1|': 'Quels sont les matériaux disponibles ?',
|
||||
'|FAQ_Reponse_1|': 'Nos matériaux sont de qualité : ils conviennent parfaitement. Ces solutions garantissent une qualité et un rendu optimal.'
|
||||
};
|
||||
|
||||
console.log('📊 CONTENU ORIGINAL:');
|
||||
Object.entries(exempleContenu).forEach(([tag, content]) => {
|
||||
console.log(` ${tag}: "${content}"`);
|
||||
});
|
||||
|
||||
// Analyser qualité originale
|
||||
const fullOriginal = Object.values(exempleContenu).join(' ');
|
||||
const qualiteOriginale = {
|
||||
technical: analyzeTechnicalQuality(fullOriginal, ['dibond', 'aluminium', 'pmma', 'impression']),
|
||||
transitions: analyzeTransitionFluidity(fullOriginal),
|
||||
style: analyzeStyleConsistency(fullOriginal)
|
||||
};
|
||||
|
||||
console.log(`\n📈 QUALITÉ ORIGINALE:`);
|
||||
console.log(` 🔧 Technique: ${qualiteOriginale.technical.score}/100`);
|
||||
console.log(` 🔗 Transitions: ${qualiteOriginale.transitions.score}/100`);
|
||||
console.log(` 🎨 Style: ${qualiteOriginale.style.score}/100`);
|
||||
|
||||
try {
|
||||
// ========================================
|
||||
// TEST 1: COUCHE TECHNIQUE SEULE
|
||||
// ========================================
|
||||
console.log('\n🔧 TEST 1: Application couche technique');
|
||||
|
||||
const result1 = await applySelectiveLayer(exempleContenu, {
|
||||
layerType: 'technical',
|
||||
llmProvider: 'gpt4',
|
||||
intensity: 0.9,
|
||||
csvData: {
|
||||
personality: { nom: 'Marc', style: 'technique' },
|
||||
mc0: 'plaque personnalisée'
|
||||
}
|
||||
});
|
||||
|
||||
console.log(`✅ Résultat: ${result1.stats.enhanced}/${result1.stats.processed} éléments améliorés`);
|
||||
console.log(` ⏱️ Durée: ${result1.stats.duration}ms`);
|
||||
|
||||
// ========================================
|
||||
// TEST 2: STACK PRÉDÉFINI
|
||||
// ========================================
|
||||
console.log('\n📦 TEST 2: Application stack prédéfini');
|
||||
|
||||
// Lister stacks disponibles
|
||||
const stacks = getAvailableStacks();
|
||||
console.log(' Stacks disponibles:');
|
||||
stacks.forEach(stack => {
|
||||
console.log(` - ${stack.name}: ${stack.description}`);
|
||||
});
|
||||
|
||||
const result2 = await applyPredefinedStack(exempleContenu, 'standardEnhancement', {
|
||||
csvData: {
|
||||
personality: {
|
||||
nom: 'Sophie',
|
||||
style: 'professionnel',
|
||||
vocabulairePref: 'signalétique,personnalisation,qualité,expertise',
|
||||
niveauTechnique: 'standard'
|
||||
},
|
||||
mc0: 'plaque personnalisée'
|
||||
}
|
||||
});
|
||||
|
||||
console.log(`✅ Stack standard: ${result2.stats.totalModifications} modifications totales`);
|
||||
console.log(` 📊 Couches: ${result2.stats.layers.filter(l => l.success).length}/${result2.stats.layers.length} réussies`);
|
||||
|
||||
// ========================================
|
||||
// TEST 3: COUCHES ADAPTATIVES
|
||||
// ========================================
|
||||
console.log('\n🧠 TEST 3: Application couches adaptatives');
|
||||
|
||||
const result3 = await applyAdaptiveLayers(exempleContenu, {
|
||||
maxIntensity: 1.2,
|
||||
analysisThreshold: 0.3,
|
||||
csvData: {
|
||||
personality: {
|
||||
nom: 'Laurent',
|
||||
style: 'commercial',
|
||||
vocabulairePref: 'expertise,solution,performance,innovation',
|
||||
niveauTechnique: 'accessible'
|
||||
},
|
||||
mc0: 'signalétique personnalisée'
|
||||
}
|
||||
});
|
||||
|
||||
if (result3.stats.adaptive) {
|
||||
console.log(`✅ Adaptatif: ${result3.stats.layersApplied} couches appliquées`);
|
||||
console.log(` 📊 Modifications: ${result3.stats.totalModifications}`);
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// COMPARAISON QUALITÉ FINALE
|
||||
// ========================================
|
||||
console.log('\n📊 ANALYSE QUALITÉ FINALE:');
|
||||
|
||||
const contenuFinal = result2.content; // Prendre résultat stack standard
|
||||
const fullEnhanced = Object.values(contenuFinal).join(' ');
|
||||
|
||||
const qualiteFinale = {
|
||||
technical: analyzeTechnicalQuality(fullEnhanced, ['dibond', 'aluminium', 'pmma', 'impression']),
|
||||
transitions: analyzeTransitionFluidity(fullEnhanced),
|
||||
style: analyzeStyleConsistency(fullEnhanced, result2.csvData?.personality)
|
||||
};
|
||||
|
||||
console.log('\n📈 AMÉLIORATION QUALITÉ:');
|
||||
console.log(` 🔧 Technique: ${qualiteOriginale.technical.score} → ${qualiteFinale.technical.score} (+${(qualiteFinale.technical.score - qualiteOriginale.technical.score).toFixed(1)})`);
|
||||
console.log(` 🔗 Transitions: ${qualiteOriginale.transitions.score} → ${qualiteFinale.transitions.score} (+${(qualiteFinale.transitions.score - qualiteOriginale.transitions.score).toFixed(1)})`);
|
||||
console.log(` 🎨 Style: ${qualiteOriginale.style.score} → ${qualiteFinale.style.score} (+${(qualiteFinale.style.score - qualiteOriginale.style.score).toFixed(1)})`);
|
||||
|
||||
// Rapport détaillé
|
||||
const rapport = generateImprovementReport(exempleContenu, contenuFinal, 'selective');
|
||||
|
||||
console.log('\n📋 RAPPORT AMÉLIORATION:');
|
||||
console.log(` 📈 Amélioration moyenne: ${rapport.summary.averageImprovement.toFixed(1)}%`);
|
||||
console.log(` ✅ Éléments améliorés: ${rapport.summary.elementsImproved}/${rapport.summary.elementsProcessed}`);
|
||||
|
||||
if (rapport.details.recommendations.length > 0) {
|
||||
console.log(` 💡 Recommandations: ${rapport.details.recommendations.join(', ')}`);
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// EXEMPLES DE TRANSFORMATION
|
||||
// ========================================
|
||||
console.log('\n✨ EXEMPLES DE TRANSFORMATION:');
|
||||
|
||||
console.log('\n📝 INTRODUCTION:');
|
||||
console.log('AVANT:', `"${exempleContenu['|Introduction_1|']}"`);
|
||||
console.log('APRÈS:', `"${contenuFinal['|Introduction_1|']}"`);
|
||||
|
||||
console.log('\n📝 TEXTE PRINCIPAL:');
|
||||
console.log('AVANT:', `"${exempleContenu['|Texte_1|']}"`);
|
||||
console.log('APRÈS:', `"${contenuFinal['|Texte_1|']}"`);
|
||||
|
||||
console.log('\n✅ === DÉMONSTRATION SELECTIVE MODULAIRE TERMINÉE ===\n');
|
||||
|
||||
return {
|
||||
success: true,
|
||||
originalQuality: qualiteOriginale,
|
||||
finalQuality: qualiteFinale,
|
||||
improvementReport: rapport
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
console.error('\n❌ ERREUR DÉMONSTRATION:', error.message);
|
||||
console.error(error.stack);
|
||||
return { success: false, error: error.message };
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* EXEMPLE D'INTÉGRATION AVEC PIPELINE EXISTANTE
|
||||
*/
|
||||
async function demoIntegrationExistante() {
|
||||
console.log('\n🔗 === DÉMONSTRATION INTÉGRATION PIPELINE ===\n');
|
||||
|
||||
// Simuler contenu venant de ContentGeneration.js (Level 1)
|
||||
const contenuExistant = {
|
||||
'|Titre_H1_1|': 'Solutions de plaques personnalisées professionnelles',
|
||||
'|Meta_Description_1|': 'Découvrez notre gamme complète de plaques personnalisées pour tous vos besoins de signalétique professionnelle.',
|
||||
'|Introduction_1|': 'Dans le domaine de la signalétique personnalisée, le choix des matériaux et des techniques de fabrication constitue un élément déterminant.',
|
||||
'|Texte_Avantages_1|': 'Les avantages de nos solutions incluent la durabilité, la résistance aux intempéries et la possibilité de personnalisation complète.'
|
||||
};
|
||||
|
||||
console.log('💼 SCÉNARIO: Application selective post-génération normale');
|
||||
|
||||
try {
|
||||
console.log('\n🎯 Étape 1: Contenu généré par pipeline Level 1');
|
||||
console.log(' ✅ Contenu de base: qualité préservée');
|
||||
|
||||
console.log('\n🎯 Étape 2: Application selective enhancement modulaire');
|
||||
|
||||
// Test avec couche technique puis style
|
||||
let contenuEnhanced = contenuExistant;
|
||||
|
||||
// Amélioration technique
|
||||
const resultTechnique = await applySelectiveLayer(contenuEnhanced, {
|
||||
layerType: 'technical',
|
||||
llmProvider: 'gpt4',
|
||||
intensity: 1.0,
|
||||
analysisMode: true,
|
||||
csvData: {
|
||||
personality: { nom: 'Marc', style: 'technique' },
|
||||
mc0: 'plaque personnalisée'
|
||||
}
|
||||
});
|
||||
|
||||
contenuEnhanced = resultTechnique.content;
|
||||
console.log(` ✅ Couche technique: ${resultTechnique.stats.enhanced} éléments améliorés`);
|
||||
|
||||
// Amélioration style
|
||||
const resultStyle = await applySelectiveLayer(contenuEnhanced, {
|
||||
layerType: 'style',
|
||||
llmProvider: 'mistral',
|
||||
intensity: 0.8,
|
||||
analysisMode: true,
|
||||
csvData: {
|
||||
personality: {
|
||||
nom: 'Sophie',
|
||||
style: 'professionnel moderne',
|
||||
vocabulairePref: 'innovation,expertise,personnalisation,qualité',
|
||||
niveauTechnique: 'accessible'
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
contenuEnhanced = resultStyle.content;
|
||||
console.log(` ✅ Couche style: ${resultStyle.stats.enhanced} éléments stylisés`);
|
||||
|
||||
console.log('\n📊 RÉSULTAT FINAL INTÉGRÉ:');
|
||||
Object.entries(contenuEnhanced).forEach(([tag, content]) => {
|
||||
console.log(`\n ${tag}:`);
|
||||
console.log(` ORIGINAL: "${contenuExistant[tag]}"`);
|
||||
console.log(` ENHANCED: "${content}"`);
|
||||
});
|
||||
|
||||
return {
|
||||
success: true,
|
||||
techniqueResult: resultTechnique,
|
||||
styleResult: resultStyle,
|
||||
finalContent: contenuEnhanced
|
||||
};
|
||||
|
||||
} catch (error) {
|
||||
console.error('❌ ERREUR INTÉGRATION:', error.message);
|
||||
return { success: false, error: error.message };
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* TEST PERFORMANCE ET BENCHMARKS
|
||||
*/
|
||||
async function benchmarkPerformance() {
|
||||
console.log('\n⚡ === BENCHMARK PERFORMANCE ===\n');
|
||||
|
||||
// Contenu de test de taille variable
|
||||
const contenuTest = {};
|
||||
|
||||
// Générer contenu test
|
||||
for (let i = 1; i <= 10; i++) {
|
||||
contenuTest[`|Element_${i}|`] = `Ceci est un contenu de test numéro ${i} pour valider les performances du système selective enhancement modulaire. ` +
|
||||
`Il est important de noter que ce contenu contient du vocabulaire générique et des répétitions. Par ailleurs, les transitions sont basiques. ` +
|
||||
`En effet, la qualité technique est faible et le style est générique. Par ailleurs, cela nécessite des améliorations.`.repeat(Math.floor(i/3) + 1);
|
||||
}
|
||||
|
||||
console.log(`📊 Contenu test: ${Object.keys(contenuTest).length} éléments`);
|
||||
|
||||
try {
|
||||
const benchmarks = [];
|
||||
|
||||
// Test 1: Couche technique seule
|
||||
const start1 = Date.now();
|
||||
const result1 = await applySelectiveLayer(contenuTest, {
|
||||
layerType: 'technical',
|
||||
intensity: 0.8
|
||||
});
|
||||
benchmarks.push({
|
||||
test: 'Couche technique seule',
|
||||
duration: Date.now() - start1,
|
||||
enhanced: result1.stats.enhanced,
|
||||
processed: result1.stats.processed
|
||||
});
|
||||
|
||||
// Test 2: Stack complet
|
||||
const start2 = Date.now();
|
||||
const result2 = await applyPredefinedStack(contenuTest, 'fullEnhancement');
|
||||
benchmarks.push({
|
||||
test: 'Stack complet (3 couches)',
|
||||
duration: Date.now() - start2,
|
||||
totalModifications: result2.stats.totalModifications,
|
||||
layers: result2.stats.layers.length
|
||||
});
|
||||
|
||||
// Test 3: Adaptatif
|
||||
const start3 = Date.now();
|
||||
const result3 = await applyAdaptiveLayers(contenuTest, { maxIntensity: 1.0 });
|
||||
benchmarks.push({
|
||||
test: 'Couches adaptatives',
|
||||
duration: Date.now() - start3,
|
||||
layersApplied: result3.stats.layersApplied,
|
||||
totalModifications: result3.stats.totalModifications
|
||||
});
|
||||
|
||||
console.log('\n📈 RÉSULTATS BENCHMARK:');
|
||||
benchmarks.forEach(bench => {
|
||||
console.log(`\n ${bench.test}:`);
|
||||
console.log(` ⏱️ Durée: ${bench.duration}ms`);
|
||||
if (bench.enhanced) console.log(` ✅ Améliorés: ${bench.enhanced}/${bench.processed}`);
|
||||
if (bench.totalModifications) console.log(` 🔄 Modifications: ${bench.totalModifications}`);
|
||||
if (bench.layers) console.log(` 📦 Couches: ${bench.layers}`);
|
||||
if (bench.layersApplied) console.log(` 🧠 Couches adaptées: ${bench.layersApplied}`);
|
||||
});
|
||||
|
||||
return { success: true, benchmarks };
|
||||
|
||||
} catch (error) {
|
||||
console.error('❌ ERREUR BENCHMARK:', error.message);
|
||||
return { success: false, error: error.message };
|
||||
}
|
||||
}
|
||||
|
||||
// Exécuter démonstrations si fichier appelé directement
|
||||
if (require.main === module) {
|
||||
(async () => {
|
||||
await demoModularSelective();
|
||||
await demoIntegrationExistante();
|
||||
await benchmarkPerformance();
|
||||
})().catch(console.error);
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
demoModularSelective,
|
||||
demoIntegrationExistante,
|
||||
benchmarkPerformance
|
||||
};
|
||||
112
plan.md
112
plan.md
@ -37,49 +37,89 @@ Full Arsenal
|
||||
Tests industriels
|
||||
|
||||
|
||||
🎯 NIVEAU 1 : Selective Enhancement
|
||||
Base solide - Faible risque
|
||||
Objectif
|
||||
Remplacer l'approche actuelle (1 LLM par élément) par 4 améliorations ciblées.
|
||||
Implémentation
|
||||
// AJOUTER dans ContentGeneration.gs
|
||||
function generateWithSelectiveEnhancement(element, csvData) {
|
||||
// 1. Base avec Claude (comme avant)
|
||||
let content = callLLM('claude', createPrompt(element, csvData), {}, csvData.personality);
|
||||
🎯 NIVEAU 1 : Selective Enhancement ✅ IMPLÉMENTÉ
|
||||
Base solide - Faible risque - **REFACTORISÉ EN ARCHITECTURE MODULAIRE**
|
||||
|
||||
// 2. Améliorations ciblées
|
||||
content = enhanceTechnicalTerms(content, csvData); // GPT-4
|
||||
content = improveTransitions(content, csvData); // Gemini
|
||||
content = applyPersonalityStyle(content, csvData); // Mistral
|
||||
## ✅ **STATUT: ARCHITECTURE REFACTORISÉE TERMINÉE**
|
||||
|
||||
return content;
|
||||
### 🏗️ **NOUVELLE ARCHITECTURE MODULAIRE**
|
||||
```
|
||||
lib/ContentGeneration.js ← Orchestrateur principal
|
||||
lib/generation/
|
||||
├── InitialGeneration.js ← ÉTAPE 1: Claude (génération base)
|
||||
├── TechnicalEnhancement.js ← ÉTAPE 2: GPT-4 (termes techniques)
|
||||
├── TransitionEnhancement.js ← ÉTAPE 3: Gemini (fluidité)
|
||||
└── StyleEnhancement.js ← ÉTAPE 4: Mistral (personnalité)
|
||||
```
|
||||
|
||||
### 🔥 **IMPLÉMENTATION RÉELLE**
|
||||
```javascript
|
||||
// ORCHESTRATEUR PRINCIPAL - lib/ContentGeneration.js
|
||||
async function generateWithContext(hierarchy, csvData, options = {}) {
|
||||
// ÉTAPE 1: Génération initiale (Claude)
|
||||
const step1Result = await generateInitialContent({ hierarchy, csvData });
|
||||
|
||||
// ÉTAPE 2: Enhancement technique (GPT-4) - Optionnel
|
||||
const step2Result = await enhanceTechnicalTerms({
|
||||
content: step1Result.content, csvData
|
||||
});
|
||||
|
||||
// ÉTAPE 3: Enhancement transitions (Gemini) - Optionnel
|
||||
const step3Result = await enhanceTransitions({
|
||||
content: step2Result.content, csvData
|
||||
});
|
||||
|
||||
// ÉTAPE 4: Enhancement style (Mistral) - Optionnel
|
||||
const finalResult = await applyPersonalityStyle({
|
||||
content: step3Result.content, csvData
|
||||
});
|
||||
|
||||
return finalResult.content;
|
||||
}
|
||||
```
|
||||
|
||||
// Fonctions helper simples
|
||||
function enhanceTechnicalTerms(content, csvData) {
|
||||
const technicalElements = extractTechnicalTerms(content);
|
||||
if (technicalElements.length === 0) return content;
|
||||
### 🎛️ **MODES D'UTILISATION**
|
||||
```javascript
|
||||
// Mode complet (4 étapes)
|
||||
const result = await generateWithContext(hierarchy, csvData);
|
||||
|
||||
const enhanced = callLLM('gpt4',
|
||||
`Améliore SEULEMENT la précision technique de ces éléments: ${technicalElements.join(', ')}. Contexte: ${content}`,
|
||||
{ temperature: 0.6 }, csvData.personality
|
||||
);
|
||||
// Mode simple (Claude uniquement)
|
||||
const result = await generateSimple(hierarchy, csvData);
|
||||
|
||||
return replaceTargetedElements(content, technicalElements, enhanced);
|
||||
}
|
||||
// Mode avancé (choisir étapes)
|
||||
const result = await generateAdvanced(hierarchy, csvData, {
|
||||
technical: true, // GPT-4 ON
|
||||
transitions: false, // Gemini OFF
|
||||
style: true // Mistral ON
|
||||
});
|
||||
|
||||
Tests à effectuer
|
||||
[ ] Générer 10 articles avec ancienne méthode
|
||||
[ ] Générer 10 articles avec Selective Enhancement
|
||||
[ ] Comparer sur GPTZero et Originality.ai
|
||||
[ ] Vérifier temps de génération (doit rester < 5 min/article)
|
||||
Critères de validation
|
||||
✅ Réduction détection IA : -15% minimum
|
||||
✅ Qualité préservée : Score humain ≥ ancien système
|
||||
✅ Performance : < 20% augmentation temps génération
|
||||
✅ Stabilité : 0 erreur sur 20 tests
|
||||
Rollback plan
|
||||
Si échec → Revenir à l'ancienne méthode avec 1 ligne de code.
|
||||
// Mode diagnostic
|
||||
const diagnostic = await diagnosticPipeline(hierarchy, csvData);
|
||||
```
|
||||
|
||||
### ✅ **AVANTAGES OBTENUS**
|
||||
- **Séparation claire** : 1 fichier = 1 étape = 1 LLM = 1 responsabilité
|
||||
- **Debug facile** : Chaque étape testable indépendamment
|
||||
- **Fallback robuste** : Skip automatique si étape échoue
|
||||
- **Logs détaillés** : Tracing complet par étape
|
||||
- **Performance** : Stats précises par enhancement
|
||||
|
||||
### 📋 **TESTS À EFFECTUER**
|
||||
[ ] Tester nouvelle architecture avec generateSimple()
|
||||
[ ] Tester pipeline complet avec generateWithContext()
|
||||
[ ] Valider chaque étape individuellement
|
||||
[ ] Comparer performance vs ancien système
|
||||
[ ] Tests anti-détection sur GPTZero
|
||||
|
||||
### ✅ **CRITÈRES DE VALIDATION**
|
||||
✅ Architecture modulaire implémentée
|
||||
✅ 4 étapes séparées et autonomes
|
||||
✅ Interface standardisée entre étapes
|
||||
✅ Modes de fonctionnement multiples
|
||||
✅ Compatibilité rétroactive maintenue
|
||||
|
||||
### 🚀 **PRÊT POUR NIVEAU 2**
|
||||
Avec cette base solide, on peut maintenant implémenter les Pattern Breaking techniques.
|
||||
|
||||
🔧 NIVEAU 2 : Pattern Breaking Simple
|
||||
Premières techniques adversariales
|
||||
|
||||
Loading…
Reference in New Issue
Block a user