seo-generator-server/lib/pipeline/PipelineExecutor.js
StillHammer 471058f731 Add flexible pipeline system with per-module LLM configuration
- New modular pipeline architecture allowing custom workflow combinations
- Per-step LLM provider configuration (Claude, OpenAI, Gemini, Deepseek, Moonshot, Mistral)
- Visual pipeline builder and runner interfaces with drag-and-drop
- 10 predefined pipeline templates (minimal-test to originality-bypass)
- Pipeline CRUD operations via ConfigManager and REST API
- Fix variable resolution in instructions (HTML tags were breaking {{variables}})
- Fix hardcoded LLM providers in AdversarialCore
- Add TESTS_LLM_PROVIDER.md documentation with validation results
- Update dashboard to disable legacy config editor

API Endpoints:
- POST /api/pipeline/save, execute, validate, estimate
- GET /api/pipeline/list, modules, templates

Backward compatible with legacy modular workflow system.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-09 14:01:52 +08:00

473 lines
15 KiB
JavaScript

/**
* PipelineExecutor.js
*
* Moteur d'exécution des pipelines modulaires flexibles.
* Orchestre l'exécution séquentielle des modules avec gestion d'état.
*/
const { logSh } = require('../ErrorReporting');
const { tracer } = require('../trace');
const { PipelineDefinition } = require('./PipelineDefinition');
const { getPersonalities, readInstructionsData, selectPersonalityWithAI } = require('../BrainConfig');
const { extractElements, buildSmartHierarchy } = require('../ElementExtraction');
const { generateMissingKeywords } = require('../MissingKeywords');
// Modules d'exécution
const { generateSimple } = require('../selective-enhancement/SelectiveUtils');
const { applySelectiveLayer } = require('../selective-enhancement/SelectiveCore');
const { applyPredefinedStack: applySelectiveStack } = require('../selective-enhancement/SelectiveLayers');
const { applyAdversarialLayer } = require('../adversarial-generation/AdversarialCore');
const { applyPredefinedStack: applyAdversarialStack } = require('../adversarial-generation/AdversarialLayers');
const { applyHumanSimulationLayer } = require('../human-simulation/HumanSimulationCore');
const { applyPredefinedSimulation } = require('../human-simulation/HumanSimulationLayers');
const { applyPatternBreakingLayer } = require('../pattern-breaking/PatternBreakingCore');
const { applyPatternBreakingStack } = require('../pattern-breaking/PatternBreakingLayers');
/**
* Classe PipelineExecutor
*/
class PipelineExecutor {
constructor() {
this.currentContent = null;
this.executionLog = [];
this.checkpoints = [];
this.metadata = {
startTime: null,
endTime: null,
totalDuration: 0,
personality: null
};
}
/**
* Exécute un pipeline complet
*/
async execute(pipelineConfig, rowNumber, options = {}) {
return tracer.run('PipelineExecutor.execute', async () => {
logSh(`🚀 Démarrage pipeline "${pipelineConfig.name}" (${pipelineConfig.pipeline.length} étapes)`, 'INFO');
// Validation
const validation = PipelineDefinition.validate(pipelineConfig);
if (!validation.valid) {
throw new Error(`Pipeline invalide: ${validation.errors.join(', ')}`);
}
this.metadata.startTime = Date.now();
this.executionLog = [];
this.checkpoints = [];
// Charger les données
const csvData = await this.loadData(rowNumber);
// Exécuter les étapes
const enabledSteps = pipelineConfig.pipeline.filter(s => s.enabled !== false);
for (let i = 0; i < enabledSteps.length; i++) {
const step = enabledSteps[i];
try {
logSh(`▶ Étape ${step.step}/${pipelineConfig.pipeline.length}: ${step.module} (${step.mode})`, 'INFO');
const stepStartTime = Date.now();
const result = await this.executeStep(step, csvData, options);
const stepDuration = Date.now() - stepStartTime;
// Log l'étape
this.executionLog.push({
step: step.step,
module: step.module,
mode: step.mode,
intensity: step.intensity,
duration: stepDuration,
modifications: result.modifications || 0,
success: true,
timestamp: new Date().toISOString()
});
// Mise à jour du contenu
if (result.content) {
this.currentContent = result.content;
}
// Checkpoint si demandé
if (step.saveCheckpoint) {
this.checkpoints.push({
step: step.step,
content: this.currentContent,
timestamp: new Date().toISOString()
});
logSh(`💾 Checkpoint sauvegardé (étape ${step.step})`, 'DEBUG');
}
logSh(`✔ Étape ${step.step} terminée (${stepDuration}ms, ${result.modifications || 0} modifs)`, 'INFO');
} catch (error) {
logSh(`✖ Erreur étape ${step.step}: ${error.message}`, 'ERROR');
this.executionLog.push({
step: step.step,
module: step.module,
mode: step.mode,
success: false,
error: error.message,
timestamp: new Date().toISOString()
});
// Propager l'erreur ou continuer selon options
if (options.stopOnError !== false) {
throw error;
}
}
}
this.metadata.endTime = Date.now();
this.metadata.totalDuration = this.metadata.endTime - this.metadata.startTime;
logSh(`✅ Pipeline terminé: ${this.metadata.totalDuration}ms`, 'INFO');
return {
success: true,
finalContent: this.currentContent,
executionLog: this.executionLog,
checkpoints: this.checkpoints,
metadata: {
...this.metadata,
pipelineName: pipelineConfig.name,
totalSteps: enabledSteps.length,
successfulSteps: this.executionLog.filter(l => l.success).length
}
};
}, { pipelineName: pipelineConfig.name, rowNumber });
}
/**
* Charge les données depuis Google Sheets
*/
async loadData(rowNumber) {
return tracer.run('PipelineExecutor.loadData', async () => {
const csvData = await readInstructionsData(rowNumber);
// Charger personnalité si besoin
const personalities = await getPersonalities();
const personality = await selectPersonalityWithAI(
csvData.mc0,
csvData.t0,
personalities
);
csvData.personality = personality;
this.metadata.personality = personality.nom;
logSh(`📊 Données chargées: ${csvData.mc0}, personnalité: ${personality.nom}`, 'DEBUG');
return csvData;
}, { rowNumber });
}
/**
* Exécute une étape individuelle
*/
async executeStep(step, csvData, options) {
return tracer.run(`PipelineExecutor.executeStep.${step.module}`, async () => {
switch (step.module) {
case 'generation':
return await this.runGeneration(step, csvData);
case 'selective':
return await this.runSelective(step, csvData);
case 'adversarial':
return await this.runAdversarial(step, csvData);
case 'human':
return await this.runHumanSimulation(step, csvData);
case 'pattern':
return await this.runPatternBreaking(step, csvData);
default:
throw new Error(`Module inconnu: ${step.module}`);
}
}, { step: step.step, module: step.module, mode: step.mode });
}
/**
* Exécute la génération initiale
*/
async runGeneration(step, csvData) {
return tracer.run('PipelineExecutor.runGeneration', async () => {
if (this.currentContent) {
logSh('⚠️ Contenu déjà généré, génération ignorée', 'WARN');
return { content: this.currentContent, modifications: 0 };
}
// Étape 1: Extraire les éléments depuis le template XML
const elements = await extractElements(csvData.xmlTemplate, csvData);
logSh(`✓ Extraction: ${elements.length} éléments extraits`, 'DEBUG');
// Étape 2: Générer les mots-clés manquants
const finalElements = await generateMissingKeywords(elements, csvData);
// Étape 3: Construire la hiérarchie
const elementsArray = Array.isArray(finalElements) ? finalElements :
(finalElements && typeof finalElements === 'object') ? Object.values(finalElements) : [];
const hierarchy = await buildSmartHierarchy(elementsArray);
logSh(`✓ Hiérarchie: ${Object.keys(hierarchy).length} sections`, 'DEBUG');
// Étape 4: Génération simple avec LLM configurable
const llmProvider = step.parameters?.llmProvider || 'claude';
const result = await generateSimple(hierarchy, csvData, { llmProvider });
logSh(`✓ Génération: ${Object.keys(result.content || {}).length} éléments créés avec ${llmProvider}`, 'DEBUG');
return {
content: result.content,
modifications: Object.keys(result.content || {}).length
};
}, { mode: step.mode });
}
/**
* Exécute l'enhancement sélectif
*/
async runSelective(step, csvData) {
return tracer.run('PipelineExecutor.runSelective', async () => {
if (!this.currentContent) {
throw new Error('Aucun contenu à améliorer. Génération requise avant selective enhancement');
}
// Configuration de la couche
const llmProvider = step.parameters?.llmProvider || 'openai';
const config = {
csvData,
personality: csvData.personality,
intensity: step.intensity || 1.0,
llmProvider: llmProvider,
...step.parameters
};
let result;
// Utiliser le stack si c'est un mode prédéfini
const predefinedStacks = ['lightEnhancement', 'standardEnhancement', 'fullEnhancement', 'personalityFocus', 'fluidityFocus', 'adaptive'];
if (predefinedStacks.includes(step.mode)) {
result = await applySelectiveStack(this.currentContent, step.mode, config);
} else {
// Sinon utiliser la couche directe
result = await applySelectiveLayer(this.currentContent, config);
}
logSh(`✓ Selective: modifications appliquées avec ${llmProvider}`, 'DEBUG');
return {
content: result.content || result,
modifications: result.modificationsCount || 0
};
}, { mode: step.mode, intensity: step.intensity });
}
/**
* Exécute l'adversarial generation
*/
async runAdversarial(step, csvData) {
return tracer.run('PipelineExecutor.runAdversarial', async () => {
if (!this.currentContent) {
throw new Error('Aucun contenu à traiter. Génération requise avant adversarial');
}
if (step.mode === 'none') {
logSh('Adversarial mode = none, ignoré', 'DEBUG');
return { content: this.currentContent, modifications: 0 };
}
const llmProvider = step.parameters?.llmProvider || 'gemini';
const config = {
csvData,
detectorTarget: step.parameters?.detector || 'general',
method: step.parameters?.method || 'regeneration',
intensity: step.intensity || 1.0,
llmProvider: llmProvider
};
let result;
// Mapper les noms user-friendly vers les vrais noms de stacks
const stackMapping = {
'light': 'lightDefense',
'standard': 'standardDefense',
'heavy': 'heavyDefense',
'adaptive': 'adaptive'
};
// Utiliser le stack si c'est un mode prédéfini
if (stackMapping[step.mode]) {
const stackName = stackMapping[step.mode];
if (stackName === 'adaptive') {
// Mode adaptatif utilise la couche directe
result = await applyAdversarialLayer(this.currentContent, config);
} else {
result = await applyAdversarialStack(this.currentContent, stackName, config);
}
} else {
// Sinon utiliser la couche directe
result = await applyAdversarialLayer(this.currentContent, config);
}
logSh(`✓ Adversarial: modifications appliquées avec ${llmProvider}`, 'DEBUG');
return {
content: result.content || result,
modifications: result.modificationsCount || 0
};
}, { mode: step.mode, detector: step.parameters?.detector });
}
/**
* Exécute la simulation humaine
*/
async runHumanSimulation(step, csvData) {
return tracer.run('PipelineExecutor.runHumanSimulation', async () => {
if (!this.currentContent) {
throw new Error('Aucun contenu à traiter. Génération requise avant human simulation');
}
if (step.mode === 'none') {
logSh('Human simulation mode = none, ignoré', 'DEBUG');
return { content: this.currentContent, modifications: 0 };
}
const llmProvider = step.parameters?.llmProvider || 'mistral';
const config = {
csvData,
personality: csvData.personality,
intensity: step.intensity || 1.0,
fatigueLevel: step.parameters?.fatigueLevel || 0.5,
errorRate: step.parameters?.errorRate || 0.3,
llmProvider: llmProvider
};
let result;
// Utiliser le stack si c'est un mode prédéfini
const predefinedModes = ['lightSimulation', 'standardSimulation', 'heavySimulation', 'adaptiveSimulation', 'personalityFocus', 'temporalFocus'];
if (predefinedModes.includes(step.mode)) {
result = await applyPredefinedSimulation(this.currentContent, step.mode, config);
} else {
// Sinon utiliser la couche directe
result = await applyHumanSimulationLayer(this.currentContent, config);
}
logSh(`✓ Human Simulation: modifications appliquées avec ${llmProvider}`, 'DEBUG');
return {
content: result.content || result,
modifications: result.modificationsCount || 0
};
}, { mode: step.mode, intensity: step.intensity });
}
/**
* Exécute le pattern breaking
*/
async runPatternBreaking(step, csvData) {
return tracer.run('PipelineExecutor.runPatternBreaking', async () => {
if (!this.currentContent) {
throw new Error('Aucun contenu à traiter. Génération requise avant pattern breaking');
}
if (step.mode === 'none') {
logSh('Pattern breaking mode = none, ignoré', 'DEBUG');
return { content: this.currentContent, modifications: 0 };
}
const llmProvider = step.parameters?.llmProvider || 'deepseek';
const config = {
csvData,
personality: csvData.personality,
intensity: step.intensity || 1.0,
focus: step.parameters?.focus || 'both',
llmProvider: llmProvider
};
let result;
// Utiliser le stack si c'est un mode prédéfini
const predefinedModes = ['lightPatternBreaking', 'standardPatternBreaking', 'heavyPatternBreaking', 'adaptivePatternBreaking', 'syntaxFocus', 'connectorsFocus'];
if (predefinedModes.includes(step.mode)) {
result = await applyPatternBreakingStack(step.mode, this.currentContent, config);
} else {
// Sinon utiliser la couche directe
result = await applyPatternBreakingLayer(this.currentContent, config);
}
logSh(`✓ Pattern Breaking: modifications appliquées avec ${llmProvider}`, 'DEBUG');
return {
content: result.content || result,
modifications: result.modificationsCount || 0
};
}, { mode: step.mode, intensity: step.intensity });
}
/**
* Obtient le contenu actuel
*/
getCurrentContent() {
return this.currentContent;
}
/**
* Obtient le log d'exécution
*/
getExecutionLog() {
return this.executionLog;
}
/**
* Obtient les checkpoints sauvegardés
*/
getCheckpoints() {
return this.checkpoints;
}
/**
* Obtient les métadonnées d'exécution
*/
getMetadata() {
return this.metadata;
}
/**
* Reset l'état de l'executor
*/
reset() {
this.currentContent = null;
this.executionLog = [];
this.checkpoints = [];
this.metadata = {
startTime: null,
endTime: null,
totalDuration: 0,
personality: null
};
}
}
module.exports = { PipelineExecutor };