# Operation-Engine Documentation ## Engine Overview **Operation-Engine** handles military strategy, adaptive AI generals with machine learning, and strategic decision-making. **Key Responsibilities:** - Strategic planning and AI generals with ML adaptation - Military doctrine evolution through learning - Battle analysis and strategy optimization - Operational coordination across multiple engagements ## Core Systems ### AI General System From `architecture-technique.md`: - **Machine Learning Adaptation**: AI generals learn from battle results - **Behavioral Evolution**: Strategies adapt based on success/failure patterns - **Personality Systems**: Distinct AI general characteristics and preferences - **Performance Tracking**: Success metrics and learning algorithms ### Strategic Planning From `systeme-militaire.md`: - **Operation Coordination**: Multi-battle strategic campaigns - **Resource Allocation**: Strategic asset distribution - **Timing Coordination**: Synchronized multi-front operations - **Contingency Planning**: Alternative strategies and fallback plans ### Doctrine Evolution - **Learning from Results**: Battle outcomes inform strategic adjustments - **Company Doctrines**: Faction-specific strategic preferences - **Adaptive Strategies**: Dynamic response to enemy tactics - **Knowledge Transfer**: Successful strategies spread between AI generals ## Engine Architecture ### Core Classes ```cpp class OperationEngine { // Strategic planning and AI generals with ML void createOperation(const std::string& operationId, const std::string& type); void assignGeneral(const std::string& operationId, std::unique_ptr general); void adaptBehaviorFromResults(const std::string& generalId, bool success); // Doctrine evolution (learning from successes/failures) void updateDoctrine(const std::string& companyId, const std::string& lessons); void analyzeBattleReports(const std::vector& reports); }; ``` ### Communication with Other Engines - **War-Engine**: Receives battle results for learning and strategy adaptation - **Intelligence-Engine**: Strategic intelligence and reconnaissance coordination - **MacroEntity-Engine**: Company-level strategic goals and doctrine preferences - **Designer-Engine**: Vehicle design requirements based on strategic needs - **Logistic-Engine**: Strategic supply chain and operational logistics ## Key Design Documents - `systeme-militaire.md` - Military strategic systems - `architecture-technique.md` - AI general ML specifications - `mecaniques-jeu.md` - Doctrine evolution mechanics - `coherence-problem.md` - Strategic AI balance considerations ## Implementation Notes - AI generals use machine learning to adapt strategies - Battle reports provide data for strategic learning - Doctrine evolution creates dynamic strategic environments - Multi-operation coordination requires sophisticated planning algorithms