seo-generator-server/claude_save.md

8.6 KiB

CLAUDE.md - Essential Information Backup

Project Overview

Node.js-based SEO content generation server converted from Google Apps Script. Generates SEO-optimized content using multiple LLMs with anti-detection mechanisms and Content DNA Mixing.

Development Commands

Production Workflow Execution

# Execute real production workflow from Google Sheets
node -e "const main = require('./lib/Main'); main.handleFullWorkflow({ rowNumber: 2, source: 'production' });"

# Test with different rows
node -e "const main = require('./lib/Main'); main.handleFullWorkflow({ rowNumber: 3, source: 'production' });"

Basic Operations

  • npm start - Start the production server on port 3000
  • npm run dev - Start the development server (same as start)
  • node server.js - Direct server startup

Testing Commands

Google Sheets Integration Tests

# Test personality loading from Google Sheets
node -e "const {getPersonalities} = require('./lib/BrainConfig'); getPersonalities().then(p => console.log(\`\${p.length} personalities loaded\`));"

# Test CSV data loading
node -e "const {readInstructionsData} = require('./lib/BrainConfig'); readInstructionsData(2).then(d => console.log('Data:', d));"

# Test random personality selection
node -e "const {selectPersonalityWithAI, getPersonalities} = require('./lib/BrainConfig'); getPersonalities().then(p => selectPersonalityWithAI('test', 'test', p)).then(r => console.log('Selected:', r.nom));"

LLM Connectivity Tests

  • node -e "require('./lib/LLMManager').testLLMManager()" - Test basic LLM connectivity
  • node -e "require('./lib/LLMManager').testLLMManagerComplete()" - Full LLM provider test suite

Complete System Test

node -e "
const main = require('./lib/Main');
const testData = {
  csvData: {
    mc0: 'plaque personnalisée',
    t0: 'Créer une plaque personnalisée unique',
    personality: { nom: 'Marc', style: 'professionnel' },
    tMinus1: 'décoration personnalisée',
    mcPlus1: 'plaque gravée,plaque métal,plaque bois,plaque acrylique',
    tPlus1: 'Plaque Gravée Premium,Plaque Métal Moderne,Plaque Bois Naturel,Plaque Acrylique Design'
  },
  xmlTemplate: Buffer.from(\`<?xml version='1.0' encoding='UTF-8'?>
<article>
  <h1>|Titre_Principal{{T0}}{Rédige un titre H1 accrocheur}|</h1>
  <intro>|Introduction{{MC0}}{Rédige une introduction engageante}|</intro>
</article>\`).toString('base64'),
  source: 'node_server_test'
};
main.handleFullWorkflow(testData);
"

Architecture Overview

Core Workflow (lib/Main.js)

  1. Data Preparation - Read from Google Sheets (CSV + XML template)
  2. Element Extraction - Parse 16+ XML elements with instructions
  3. Missing Keywords Generation - Auto-complete missing data
  4. Direct Content Generation - Bypass hierarchy, generate all elements
  5. Multi-LLM Enhancement - 4-stage processing (Claude → GPT-4 → Gemini → Mistral)
  6. Content Assembly - Inject content back into XML template
  7. Organic Compilation & Storage - Save clean text to Google Sheets

Google Sheets Integration (lib/BrainConfig.js, lib/ArticleStorage.js)

Authentication: Environment variables (GOOGLE_SERVICE_ACCOUNT_EMAIL, GOOGLE_PRIVATE_KEY)

Data Sources:

  • Instructions Sheet: Columns A-I (slug, T0, MC0, T-1, L-1, MC+1, T+1, L+1, XML)
  • Personnalites Sheet: 15 personalities with complete profiles
  • Generated_Articles Sheet: Compiled text output with metadata

Personality System (lib/BrainConfig.js:265-340)

Random Selection Process:

  1. Load 15 personalities from Google Sheets
  2. Fisher-Yates shuffle for true randomness
  3. Select 60% (9 personalities) per generation
  4. AI chooses best match within random subset
  5. Temperature = 1.0 for maximum variability

Multi-LLM Pipeline (lib/ContentGeneration.js)

  1. Base Generation (Claude Sonnet-4) - Initial content creation
  2. Technical Enhancement (GPT-4o-mini) - Add precision and terminology
  3. Transition Enhancement (Gemini) - Improve flow (if available)
  4. Personality Style (Mistral) - Apply personality-specific voice

LogSh - Centralized Logging System

Architecture

  • Centralized logging: All logs must go through LogSh function in ErrorReporting.js
  • Multi-output streams: Console (pretty format) + File (JSON) + WebSocket (real-time)
  • No console or custom loggers: Do not use console.* or alternate logger modules

Log Levels and Usage

  • TRACE: Hierarchical workflow execution with parameters (▶ ✔ ✖ symbols)
  • DEBUG: Detailed debugging information (visible in files with debug level)
  • INFO: Standard operational messages
  • WARN: Warning conditions
  • ERROR: Error conditions with stack traces

File Logging

  • Format: JSON structured logs in timestamped files
  • Location: logs/seo-generator-YYYY-MM-DD_HH-MM-SS.log
  • Flush behavior: Immediate flush on every log call to prevent buffer loss
  • Level: DEBUG and above (includes all TRACE logs)

Real-time Logging

  • WebSocket server: Port 8081 for live log viewing
  • Auto-launch: logs-viewer.html opens in Edge browser automatically
  • Features: Search, filtering by level, scroll preservation, compact UI

Trace System

  • Hierarchical execution tracking: Using AsyncLocalStorage for span context
  • Function parameters: All tracer.run() calls include relevant parameters
  • Format: Function names with file prefixes (e.g., "Main.handleFullWorkflow()")
  • Performance timing: Start/end with duration measurements
  • Error handling: Automatic stack trace logging on failures

🔍 Log Consultation (LogViewer)

Contexte

  • Les logs ne sont plus envoyés en console.log (trop verbeux).
  • Tous les événements sont enregistrés dans logs/app.log au format JSONL Pino.

Outil dédié

Un outil tools/logViewer.js permet d'interroger facilement ce fichier.

Commandes rapides

  • Voir les 200 dernières lignes formatées

    node tools/logViewer.js --pretty
    
  • Rechercher un mot-clé dans les messages

    node tools/logViewer.js --search --includes "Claude" --pretty
    
  • Rechercher par plage de temps

    # Tous les logs du 2 septembre 2025
    node tools/logViewer.js --since 2025-09-02T00:00:00Z --until 2025-09-02T23:59:59Z --pretty
    
  • Filtrer par niveau d'erreur

    node tools/logViewer.js --last 300 --level ERROR --pretty
    

Filtres disponibles

  • --level : 30=INFO, 40=WARN, 50=ERROR (ou INFO, WARN, ERROR)
  • --module : filtre par path ou module
  • --includes : mot-clé dans msg
  • --regex : expression régulière sur msg
  • --since / --until : bornes temporelles (ISO ou YYYY-MM-DD)

📦 Bundling Tool

pack-lib.cjs creates a single code.js from all files in lib/.
Each file is concatenated with an ASCII header showing its path. Imports/exports are kept, so the bundle is for reading/audit only, not execution.

Usage

node pack-lib.cjs              # default → code.js
node pack-lib.cjs --out out.js # custom output
node pack-lib.cjs --order alpha
node pack-lib.cjs --entry lib/test-manual.js

File Structure

  • server.js : Express server with basic endpoints
  • lib/Main.js : Core workflow orchestration
  • lib/BrainConfig.js : Google Sheets integration + personality system
  • lib/LLMManager.js : Multi-LLM provider management
  • lib/ContentGeneration.js : Content generation and enhancement
  • lib/ElementExtraction.js : XML parsing and element extraction
  • lib/ArticleStorage.js : Google Sheets storage and compilation
  • lib/ErrorReporting.js : Logging and error handling
  • .env : Environment configuration (Google credentials, API keys)

Key Dependencies

  • googleapis : Google Sheets API integration
  • axios : HTTP client for LLM APIs
  • dotenv : Environment variable management
  • express : Web server framework
  • nodemailer : Email notifications (needs setup)

Important Notes for Future Development

  • Personality system is now random-based: 60% of 15 personalities selected per run
  • All data comes from Google Sheets: No more JSON files or hardcoded data
  • Default XML template: Auto-generated when column I contains filename
  • Temperature = 1.0: Maximum variability in AI selection
  • Direct element generation: Bypasses hierarchy system for reliability
  • Organic compilation: Maintains natural text flow in final output
  • 5/6 LLM providers operational: Gemini geo-blocked, others fully functional

Workflow Sources

  • production - Real Google Sheets data processing
  • test_random_personality - Testing with personality randomization
  • node_server - Direct API processing
  • Legacy: make_com, digital_ocean_autonomous